src/HOL/Tools/SMT2/z3_new_replay_util.ML
changeset 56089 99c82a837f8a
parent 56078 624faeda77b5
child 56090 34bd10a9a2ad
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT2/z3_new_replay_util.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,156 @@
+(*  Title:      HOL/Tools/SMT2/z3_new_proof_tools.ML
+    Author:     Sascha Boehme, TU Muenchen
+
+Helper functions required for Z3 proof replay.
+*)
+
+signature Z3_NEW_PROOF_TOOLS =
+sig
+  (*theorem nets*)
+  val thm_net_of: ('a -> thm) -> 'a list -> 'a Net.net
+  val net_instances: (int * thm) Net.net -> cterm -> (int * thm) list
+
+  (*proof combinators*)
+  val under_assumption: (thm -> thm) -> cterm -> thm
+  val discharge: thm -> thm -> thm
+
+  (*a faster COMP*)
+  type compose_data
+  val precompose: (cterm -> cterm list) -> thm -> compose_data
+  val precompose2: (cterm -> cterm * cterm) -> thm -> compose_data
+  val compose: compose_data -> thm -> thm
+
+  (*simpset*)
+  val add_simproc: Simplifier.simproc -> Context.generic -> Context.generic
+  val make_simpset: Proof.context -> thm list -> simpset
+end
+
+structure Z3_New_Proof_Tools: Z3_NEW_PROOF_TOOLS =
+struct
+
+
+
+(* theorem nets *)
+
+fun thm_net_of f xthms =
+  let fun insert xthm = Net.insert_term (K false) (Thm.prop_of (f xthm), xthm)
+  in fold insert xthms Net.empty end
+
+fun maybe_instantiate ct thm =
+  try Thm.first_order_match (Thm.cprop_of thm, ct)
+  |> Option.map (fn inst => Thm.instantiate inst thm)
+
+local
+  fun instances_from_net match f net ct =
+    let
+      val lookup = if match then Net.match_term else Net.unify_term
+      val xthms = lookup net (Thm.term_of ct)
+      fun select ct = map_filter (f (maybe_instantiate ct)) xthms 
+      fun select' ct =
+        let val thm = Thm.trivial ct
+        in map_filter (f (try (fn rule => rule COMP thm))) xthms end
+    in (case select ct of [] => select' ct | xthms' => xthms') end
+in
+
+fun net_instances net =
+  instances_from_net false (fn f => fn (i, thm) => Option.map (pair i) (f thm))
+    net
+
+end
+
+
+
+(* proof combinators *)
+
+fun under_assumption f ct =
+  let val ct' = SMT2_Utils.mk_cprop ct
+  in Thm.implies_intr ct' (f (Thm.assume ct')) end
+
+fun discharge p pq = Thm.implies_elim pq p
+
+
+
+(* a faster COMP *)
+
+type compose_data = cterm list * (cterm -> cterm list) * thm
+
+fun list2 (x, y) = [x, y]
+
+fun precompose f rule = (f (Thm.cprem_of rule 1), f, rule)
+fun precompose2 f rule = precompose (list2 o f) rule
+
+fun compose (cvs, f, rule) thm =
+  discharge thm (Thm.instantiate ([], cvs ~~ f (Thm.cprop_of thm)) rule)
+
+
+
+(* simpset *)
+
+local
+  val antisym_le1 = mk_meta_eq @{thm order_class.antisym_conv}
+  val antisym_le2 = mk_meta_eq @{thm linorder_class.antisym_conv2}
+  val antisym_less1 = mk_meta_eq @{thm linorder_class.antisym_conv1}
+  val antisym_less2 = mk_meta_eq @{thm linorder_class.antisym_conv3}
+
+  fun eq_prop t thm = HOLogic.mk_Trueprop t aconv Thm.prop_of thm
+  fun dest_binop ((c as Const _) $ t $ u) = (c, t, u)
+    | dest_binop t = raise TERM ("dest_binop", [t])
+
+  fun prove_antisym_le ctxt t =
+    let
+      val (le, r, s) = dest_binop t
+      val less = Const (@{const_name less}, Term.fastype_of le)
+      val prems = Simplifier.prems_of ctxt
+    in
+      (case find_first (eq_prop (le $ s $ r)) prems of
+        NONE =>
+          find_first (eq_prop (HOLogic.mk_not (less $ r $ s))) prems
+          |> Option.map (fn thm => thm RS antisym_less1)
+      | SOME thm => SOME (thm RS antisym_le1))
+    end
+    handle THM _ => NONE
+
+  fun prove_antisym_less ctxt t =
+    let
+      val (less, r, s) = dest_binop (HOLogic.dest_not t)
+      val le = Const (@{const_name less_eq}, Term.fastype_of less)
+      val prems = Simplifier.prems_of ctxt
+    in
+      (case find_first (eq_prop (le $ r $ s)) prems of
+        NONE =>
+          find_first (eq_prop (HOLogic.mk_not (less $ s $ r))) prems
+          |> Option.map (fn thm => thm RS antisym_less2)
+      | SOME thm => SOME (thm RS antisym_le2))
+  end
+  handle THM _ => NONE
+
+  val basic_simpset =
+    simpset_of (put_simpset HOL_ss @{context}
+      addsimps @{thms field_simps times_divide_eq_right times_divide_eq_left arith_special
+        arith_simps rel_simps array_rules z3div_def z3mod_def}
+      addsimprocs [@{simproc binary_int_div}, @{simproc binary_int_mod},
+        Simplifier.simproc_global @{theory} "fast_int_arith" [
+          "(m::int) < n", "(m::int) <= n", "(m::int) = n"] Lin_Arith.simproc,
+        Simplifier.simproc_global @{theory} "antisym_le" ["(x::'a::order) <= y"] prove_antisym_le,
+        Simplifier.simproc_global @{theory} "antisym_less" ["~ (x::'a::linorder) < y"]
+          prove_antisym_less])
+
+  structure Simpset = Generic_Data
+  (
+    type T = simpset
+    val empty = basic_simpset
+    val extend = I
+    val merge = Simplifier.merge_ss
+  )
+in
+
+fun add_simproc simproc context =
+  Simpset.map (simpset_map (Context.proof_of context)
+    (fn ctxt => ctxt addsimprocs [simproc])) context
+
+fun make_simpset ctxt rules =
+  simpset_of (put_simpset (Simpset.get (Context.Proof ctxt)) ctxt addsimps rules)
+
+end
+
+end