src/ZF/Constructible/Rec_Separation.thy
changeset 13428 99e52e78eb65
parent 13422 af9bc8d87a75
child 13429 2232810416fc
--- a/src/ZF/Constructible/Rec_Separation.thy	Sun Jul 28 21:09:37 2002 +0200
+++ b/src/ZF/Constructible/Rec_Separation.thy	Mon Jul 29 00:57:16 2002 +0200
@@ -6,7 +6,7 @@
 "M_trancl"}, @{text "M_wfrank"} and @{text "M_datatypes"}*}
 
 lemma eq_succ_imp_lt: "[|i = succ(j); Ord(i)|] ==> j<i"
-by simp 
+by simp
 
 subsection{*The Locale @{text "M_trancl"}*}
 
@@ -15,69 +15,69 @@
 text{*First, The Defining Formula*}
 
 (* "rtran_closure_mem(M,A,r,p) ==
-      \<exists>nnat[M]. \<exists>n[M]. \<exists>n'[M]. 
+      \<exists>nnat[M]. \<exists>n[M]. \<exists>n'[M].
        omega(M,nnat) & n\<in>nnat & successor(M,n,n') &
        (\<exists>f[M]. typed_function(M,n',A,f) &
-	(\<exists>x[M]. \<exists>y[M]. \<exists>zero[M]. pair(M,x,y,p) & empty(M,zero) &
-	  fun_apply(M,f,zero,x) & fun_apply(M,f,n,y)) &
-	(\<forall>j[M]. j\<in>n --> 
-	  (\<exists>fj[M]. \<exists>sj[M]. \<exists>fsj[M]. \<exists>ffp[M]. 
-	    fun_apply(M,f,j,fj) & successor(M,j,sj) &
-	    fun_apply(M,f,sj,fsj) & pair(M,fj,fsj,ffp) & ffp \<in> r)))"*)
+        (\<exists>x[M]. \<exists>y[M]. \<exists>zero[M]. pair(M,x,y,p) & empty(M,zero) &
+          fun_apply(M,f,zero,x) & fun_apply(M,f,n,y)) &
+        (\<forall>j[M]. j\<in>n -->
+          (\<exists>fj[M]. \<exists>sj[M]. \<exists>fsj[M]. \<exists>ffp[M].
+            fun_apply(M,f,j,fj) & successor(M,j,sj) &
+            fun_apply(M,f,sj,fsj) & pair(M,fj,fsj,ffp) & ffp \<in> r)))"*)
 constdefs rtran_closure_mem_fm :: "[i,i,i]=>i"
- "rtran_closure_mem_fm(A,r,p) == 
+ "rtran_closure_mem_fm(A,r,p) ==
    Exists(Exists(Exists(
     And(omega_fm(2),
      And(Member(1,2),
       And(succ_fm(1,0),
        Exists(And(typed_function_fm(1, A#+4, 0),
-	And(Exists(Exists(Exists(
-	      And(pair_fm(2,1,p#+7), 
-	       And(empty_fm(0),
-		And(fun_apply_fm(3,0,2), fun_apply_fm(3,5,1))))))),
-	    Forall(Implies(Member(0,3),
-	     Exists(Exists(Exists(Exists(
-	      And(fun_apply_fm(5,4,3),
-	       And(succ_fm(4,2),
-		And(fun_apply_fm(5,2,1),
-		 And(pair_fm(3,1,0), Member(0,r#+9))))))))))))))))))))"
+        And(Exists(Exists(Exists(
+              And(pair_fm(2,1,p#+7),
+               And(empty_fm(0),
+                And(fun_apply_fm(3,0,2), fun_apply_fm(3,5,1))))))),
+            Forall(Implies(Member(0,3),
+             Exists(Exists(Exists(Exists(
+              And(fun_apply_fm(5,4,3),
+               And(succ_fm(4,2),
+                And(fun_apply_fm(5,2,1),
+                 And(pair_fm(3,1,0), Member(0,r#+9))))))))))))))))))))"
 
 
 lemma rtran_closure_mem_type [TC]:
  "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> rtran_closure_mem_fm(x,y,z) \<in> formula"
-by (simp add: rtran_closure_mem_fm_def) 
+by (simp add: rtran_closure_mem_fm_def)
 
 lemma arity_rtran_closure_mem_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |] 
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
       ==> arity(rtran_closure_mem_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: rtran_closure_mem_fm_def succ_Un_distrib [symmetric] Un_ac) 
+by (simp add: rtran_closure_mem_fm_def succ_Un_distrib [symmetric] Un_ac)
 
 lemma sats_rtran_closure_mem_fm [simp]:
    "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, rtran_closure_mem_fm(x,y,z), env) <-> 
+    ==> sats(A, rtran_closure_mem_fm(x,y,z), env) <->
         rtran_closure_mem(**A, nth(x,env), nth(y,env), nth(z,env))"
 by (simp add: rtran_closure_mem_fm_def rtran_closure_mem_def)
 
 lemma rtran_closure_mem_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
           i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
        ==> rtran_closure_mem(**A, x, y, z) <-> sats(A, rtran_closure_mem_fm(i,j,k), env)"
 by (simp add: sats_rtran_closure_mem_fm)
 
 theorem rtran_closure_mem_reflection:
-     "REFLECTS[\<lambda>x. rtran_closure_mem(L,f(x),g(x),h(x)), 
+     "REFLECTS[\<lambda>x. rtran_closure_mem(L,f(x),g(x),h(x)),
                \<lambda>i x. rtran_closure_mem(**Lset(i),f(x),g(x),h(x))]"
 apply (simp only: rtran_closure_mem_def setclass_simps)
-apply (intro FOL_reflections function_reflections fun_plus_reflections)  
+apply (intro FOL_reflections function_reflections fun_plus_reflections)
 done
 
 text{*Separation for @{term "rtrancl(r)"}.*}
 lemma rtrancl_separation:
      "[| L(r); L(A) |] ==> separation (L, rtran_closure_mem(L,A,r))"
-apply (rule separation_CollectI) 
-apply (rule_tac A="{r,A,z}" in subset_LsetE, blast ) 
+apply (rule separation_CollectI)
+apply (rule_tac A="{r,A,z}" in subset_LsetE, blast )
 apply (rule ReflectsE [OF rtran_closure_mem_reflection], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2)
 apply (rule DPow_LsetI)
@@ -89,38 +89,38 @@
 
 subsubsection{*Reflexive/Transitive Closure, Internalized*}
 
-(*  "rtran_closure(M,r,s) == 
+(*  "rtran_closure(M,r,s) ==
         \<forall>A[M]. is_field(M,r,A) -->
- 	 (\<forall>p[M]. p \<in> s <-> rtran_closure_mem(M,A,r,p))" *)
+         (\<forall>p[M]. p \<in> s <-> rtran_closure_mem(M,A,r,p))" *)
 constdefs rtran_closure_fm :: "[i,i]=>i"
- "rtran_closure_fm(r,s) == 
+ "rtran_closure_fm(r,s) ==
    Forall(Implies(field_fm(succ(r),0),
                   Forall(Iff(Member(0,succ(succ(s))),
                              rtran_closure_mem_fm(1,succ(succ(r)),0)))))"
 
 lemma rtran_closure_type [TC]:
      "[| x \<in> nat; y \<in> nat |] ==> rtran_closure_fm(x,y) \<in> formula"
-by (simp add: rtran_closure_fm_def) 
+by (simp add: rtran_closure_fm_def)
 
 lemma arity_rtran_closure_fm [simp]:
-     "[| x \<in> nat; y \<in> nat |] 
+     "[| x \<in> nat; y \<in> nat |]
       ==> arity(rtran_closure_fm(x,y)) = succ(x) \<union> succ(y)"
 by (simp add: rtran_closure_fm_def succ_Un_distrib [symmetric] Un_ac)
 
 lemma sats_rtran_closure_fm [simp]:
    "[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, rtran_closure_fm(x,y), env) <-> 
+    ==> sats(A, rtran_closure_fm(x,y), env) <->
         rtran_closure(**A, nth(x,env), nth(y,env))"
 by (simp add: rtran_closure_fm_def rtran_closure_def)
 
 lemma rtran_closure_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; 
+      "[| nth(i,env) = x; nth(j,env) = y;
           i \<in> nat; j \<in> nat; env \<in> list(A)|]
        ==> rtran_closure(**A, x, y) <-> sats(A, rtran_closure_fm(i,j), env)"
 by simp
 
 theorem rtran_closure_reflection:
-     "REFLECTS[\<lambda>x. rtran_closure(L,f(x),g(x)), 
+     "REFLECTS[\<lambda>x. rtran_closure(L,f(x),g(x)),
                \<lambda>i x. rtran_closure(**Lset(i),f(x),g(x))]"
 apply (simp only: rtran_closure_def setclass_simps)
 apply (intro FOL_reflections function_reflections rtran_closure_mem_reflection)
@@ -132,35 +132,35 @@
 (*  "tran_closure(M,r,t) ==
          \<exists>s[M]. rtran_closure(M,r,s) & composition(M,r,s,t)" *)
 constdefs tran_closure_fm :: "[i,i]=>i"
- "tran_closure_fm(r,s) == 
+ "tran_closure_fm(r,s) ==
    Exists(And(rtran_closure_fm(succ(r),0), composition_fm(succ(r),0,succ(s))))"
 
 lemma tran_closure_type [TC]:
      "[| x \<in> nat; y \<in> nat |] ==> tran_closure_fm(x,y) \<in> formula"
-by (simp add: tran_closure_fm_def) 
+by (simp add: tran_closure_fm_def)
 
 lemma arity_tran_closure_fm [simp]:
-     "[| x \<in> nat; y \<in> nat |] 
+     "[| x \<in> nat; y \<in> nat |]
       ==> arity(tran_closure_fm(x,y)) = succ(x) \<union> succ(y)"
 by (simp add: tran_closure_fm_def succ_Un_distrib [symmetric] Un_ac)
 
 lemma sats_tran_closure_fm [simp]:
    "[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, tran_closure_fm(x,y), env) <-> 
+    ==> sats(A, tran_closure_fm(x,y), env) <->
         tran_closure(**A, nth(x,env), nth(y,env))"
 by (simp add: tran_closure_fm_def tran_closure_def)
 
 lemma tran_closure_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; 
+      "[| nth(i,env) = x; nth(j,env) = y;
           i \<in> nat; j \<in> nat; env \<in> list(A)|]
        ==> tran_closure(**A, x, y) <-> sats(A, tran_closure_fm(i,j), env)"
 by simp
 
 theorem tran_closure_reflection:
-     "REFLECTS[\<lambda>x. tran_closure(L,f(x),g(x)), 
+     "REFLECTS[\<lambda>x. tran_closure(L,f(x),g(x)),
                \<lambda>i x. tran_closure(**Lset(i),f(x),g(x))]"
 apply (simp only: tran_closure_def setclass_simps)
-apply (intro FOL_reflections function_reflections 
+apply (intro FOL_reflections function_reflections
              rtran_closure_reflection composition_reflection)
 done
 
@@ -168,60 +168,62 @@
 subsection{*Separation for the Proof of @{text "wellfounded_on_trancl"}*}
 
 lemma wellfounded_trancl_reflects:
-  "REFLECTS[\<lambda>x. \<exists>w[L]. \<exists>wx[L]. \<exists>rp[L]. 
-	         w \<in> Z & pair(L,w,x,wx) & tran_closure(L,r,rp) & wx \<in> rp,
-   \<lambda>i x. \<exists>w \<in> Lset(i). \<exists>wx \<in> Lset(i). \<exists>rp \<in> Lset(i). 
+  "REFLECTS[\<lambda>x. \<exists>w[L]. \<exists>wx[L]. \<exists>rp[L].
+                 w \<in> Z & pair(L,w,x,wx) & tran_closure(L,r,rp) & wx \<in> rp,
+   \<lambda>i x. \<exists>w \<in> Lset(i). \<exists>wx \<in> Lset(i). \<exists>rp \<in> Lset(i).
        w \<in> Z & pair(**Lset(i),w,x,wx) & tran_closure(**Lset(i),r,rp) &
        wx \<in> rp]"
-by (intro FOL_reflections function_reflections fun_plus_reflections 
+by (intro FOL_reflections function_reflections fun_plus_reflections
           tran_closure_reflection)
 
 
 lemma wellfounded_trancl_separation:
-	 "[| L(r); L(Z) |] ==> 
-	  separation (L, \<lambda>x. 
-	      \<exists>w[L]. \<exists>wx[L]. \<exists>rp[L]. 
-	       w \<in> Z & pair(L,w,x,wx) & tran_closure(L,r,rp) & wx \<in> rp)"
-apply (rule separation_CollectI) 
-apply (rule_tac A="{r,Z,z}" in subset_LsetE, blast ) 
+         "[| L(r); L(Z) |] ==>
+          separation (L, \<lambda>x.
+              \<exists>w[L]. \<exists>wx[L]. \<exists>rp[L].
+               w \<in> Z & pair(L,w,x,wx) & tran_closure(L,r,rp) & wx \<in> rp)"
+apply (rule separation_CollectI)
+apply (rule_tac A="{r,Z,z}" in subset_LsetE, blast )
 apply (rule ReflectsE [OF wellfounded_trancl_reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2)
 apply (rule DPow_LsetI)
-apply (rename_tac u) 
+apply (rename_tac u)
 apply (rule bex_iff_sats conj_iff_sats)+
-apply (rule_tac env = "[w,u,r,Z]" in mem_iff_sats) 
+apply (rule_tac env = "[w,u,r,Z]" in mem_iff_sats)
 apply (rule sep_rules tran_closure_iff_sats | simp)+
 done
 
 
 subsubsection{*Instantiating the locale @{text M_trancl}*}
-ML
-{*
-val rtrancl_separation = thm "rtrancl_separation";
-val wellfounded_trancl_separation = thm "wellfounded_trancl_separation";
+
+theorem M_trancl_axioms_L: "M_trancl_axioms(L)"
+  apply (rule M_trancl_axioms.intro)
+   apply (assumption | rule
+     rtrancl_separation wellfounded_trancl_separation)+
+  done
 
-
-val m_trancl = [rtrancl_separation, wellfounded_trancl_separation];
-
-fun trancl_L th =
-    kill_flex_triv_prems (m_trancl MRS (axioms_L th));
+theorem M_trancl_L: "PROP M_trancl(L)"
+  apply (rule M_trancl.intro)
+    apply (rule M_triv_axioms_L)
+   apply (rule M_axioms_axioms_L)
+  apply (rule M_trancl_axioms_L)
+  done
 
-bind_thm ("iterates_abs", trancl_L (thm "M_trancl.iterates_abs"));
-bind_thm ("rtran_closure_rtrancl", trancl_L (thm "M_trancl.rtran_closure_rtrancl"));
-bind_thm ("rtrancl_closed", trancl_L (thm "M_trancl.rtrancl_closed"));
-bind_thm ("rtrancl_abs", trancl_L (thm "M_trancl.rtrancl_abs"));
-bind_thm ("trancl_closed", trancl_L (thm "M_trancl.trancl_closed"));
-bind_thm ("trancl_abs", trancl_L (thm "M_trancl.trancl_abs"));
-bind_thm ("wellfounded_on_trancl", trancl_L (thm "M_trancl.wellfounded_on_trancl"));
-bind_thm ("wellfounded_trancl", trancl_L (thm "M_trancl.wellfounded_trancl"));
-bind_thm ("wfrec_relativize", trancl_L (thm "M_trancl.wfrec_relativize"));
-bind_thm ("trans_wfrec_relativize", trancl_L (thm "M_trancl.trans_wfrec_relativize"));
-bind_thm ("trans_wfrec_abs", trancl_L (thm "M_trancl.trans_wfrec_abs"));
-bind_thm ("trans_eq_pair_wfrec_iff", trancl_L (thm "M_trancl.trans_eq_pair_wfrec_iff"));
-bind_thm ("eq_pair_wfrec_iff", trancl_L (thm "M_trancl.eq_pair_wfrec_iff"));
-*}
+lemmas iterates_abs = M_trancl.iterates_abs [OF M_trancl_L]
+  and rtran_closure_rtrancl = M_trancl.rtran_closure_rtrancl [OF M_trancl_L]
+  and rtrancl_closed = M_trancl.rtrancl_closed [OF M_trancl_L]
+  and rtrancl_abs = M_trancl.rtrancl_abs [OF M_trancl_L]
+  and trancl_closed = M_trancl.trancl_closed [OF M_trancl_L]
+  and trancl_abs = M_trancl.trancl_abs [OF M_trancl_L]
+  and wellfounded_on_trancl = M_trancl.wellfounded_on_trancl [OF M_trancl_L]
+  and wellfounded_trancl = M_trancl.wellfounded_trancl [OF M_trancl_L]
+  and wfrec_relativize = M_trancl.wfrec_relativize [OF M_trancl_L]
+  and trans_wfrec_relativize = M_trancl.trans_wfrec_relativize [OF M_trancl_L]
+  and trans_wfrec_abs = M_trancl.trans_wfrec_abs [OF M_trancl_L]
+  and trans_eq_pair_wfrec_iff = M_trancl.trans_eq_pair_wfrec_iff [OF M_trancl_L]
+  and eq_pair_wfrec_iff = M_trancl.eq_pair_wfrec_iff [OF M_trancl_L]
 
 declare rtrancl_closed [intro,simp]
 declare rtrancl_abs [simp]
@@ -232,17 +234,17 @@
 subsection{*Well-Founded Recursion!*}
 
 (* M_is_recfun :: "[i=>o, [i,i,i]=>o, i, i, i] => o"
-   "M_is_recfun(M,MH,r,a,f) == 
-     \<forall>z[M]. z \<in> f <-> 
+   "M_is_recfun(M,MH,r,a,f) ==
+     \<forall>z[M]. z \<in> f <->
             5      4       3       2       1           0
-            (\<exists>x[M]. \<exists>y[M]. \<exists>xa[M]. \<exists>sx[M]. \<exists>r_sx[M]. \<exists>f_r_sx[M]. 
-	       pair(M,x,y,z) & pair(M,x,a,xa) & upair(M,x,x,sx) &
+            (\<exists>x[M]. \<exists>y[M]. \<exists>xa[M]. \<exists>sx[M]. \<exists>r_sx[M]. \<exists>f_r_sx[M].
+               pair(M,x,y,z) & pair(M,x,a,xa) & upair(M,x,x,sx) &
                pre_image(M,r,sx,r_sx) & restriction(M,f,r_sx,f_r_sx) &
                xa \<in> r & MH(x, f_r_sx, y))"
 *)
 
 constdefs is_recfun_fm :: "[[i,i,i]=>i, i, i, i]=>i"
- "is_recfun_fm(p,r,a,f) == 
+ "is_recfun_fm(p,r,a,f) ==
    Forall(Iff(Member(0,succ(f)),
     Exists(Exists(Exists(Exists(Exists(Exists(
      And(pair_fm(5,4,6),
@@ -254,39 +256,39 @@
 
 
 lemma is_recfun_type_0:
-     "[| !!x y z. [| x \<in> nat; y \<in> nat; z \<in> nat |] ==> p(x,y,z) \<in> formula;  
-         x \<in> nat; y \<in> nat; z \<in> nat |] 
+     "[| !!x y z. [| x \<in> nat; y \<in> nat; z \<in> nat |] ==> p(x,y,z) \<in> formula;
+         x \<in> nat; y \<in> nat; z \<in> nat |]
       ==> is_recfun_fm(p,x,y,z) \<in> formula"
 apply (unfold is_recfun_fm_def)
 (*FIXME: FIND OUT why simp loops!*)
 apply typecheck
-by simp 
+by simp
 
 lemma is_recfun_type [TC]:
-     "[| p(5,0,4) \<in> formula;  
-         x \<in> nat; y \<in> nat; z \<in> nat |] 
+     "[| p(5,0,4) \<in> formula;
+         x \<in> nat; y \<in> nat; z \<in> nat |]
       ==> is_recfun_fm(p,x,y,z) \<in> formula"
-by (simp add: is_recfun_fm_def) 
+by (simp add: is_recfun_fm_def)
 
 lemma arity_is_recfun_fm [simp]:
-     "[| arity(p(5,0,4)) le 8; x \<in> nat; y \<in> nat; z \<in> nat |] 
+     "[| arity(p(5,0,4)) le 8; x \<in> nat; y \<in> nat; z \<in> nat |]
       ==> arity(is_recfun_fm(p,x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-apply (frule lt_nat_in_nat, simp) 
-apply (simp add: is_recfun_fm_def succ_Un_distrib [symmetric] ) 
-apply (subst subset_Un_iff2 [of "arity(p(5,0,4))", THEN iffD1]) 
-apply (rule le_imp_subset) 
-apply (erule le_trans, simp) 
-apply (simp add: succ_Un_distrib [symmetric] Un_ac) 
+apply (frule lt_nat_in_nat, simp)
+apply (simp add: is_recfun_fm_def succ_Un_distrib [symmetric] )
+apply (subst subset_Un_iff2 [of "arity(p(5,0,4))", THEN iffD1])
+apply (rule le_imp_subset)
+apply (erule le_trans, simp)
+apply (simp add: succ_Un_distrib [symmetric] Un_ac)
 done
 
 lemma sats_is_recfun_fm:
-  assumes MH_iff_sats: 
-      "!!x y z env. 
-	 [| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-	 ==> MH(nth(x,env), nth(y,env), nth(z,env)) <-> sats(A, p(x,y,z), env)"
-  shows 
+  assumes MH_iff_sats:
+      "!!x y z env.
+         [| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
+         ==> MH(nth(x,env), nth(y,env), nth(z,env)) <-> sats(A, p(x,y,z), env)"
+  shows
       "[|x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-       ==> sats(A, is_recfun_fm(p,x,y,z), env) <-> 
+       ==> sats(A, is_recfun_fm(p,x,y,z), env) <->
            M_is_recfun(**A, MH, nth(x,env), nth(y,env), nth(z,env))"
 by (simp add: is_recfun_fm_def M_is_recfun_def MH_iff_sats [THEN iff_sym])
 
@@ -294,20 +296,20 @@
   "[| (!!x y z env. [| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
                     ==> MH(nth(x,env), nth(y,env), nth(z,env)) <->
                         sats(A, p(x,y,z), env));
-      nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
+      nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
       i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
-   ==> M_is_recfun(**A, MH, x, y, z) <-> sats(A, is_recfun_fm(p,i,j,k), env)" 
+   ==> M_is_recfun(**A, MH, x, y, z) <-> sats(A, is_recfun_fm(p,i,j,k), env)"
 by (simp add: sats_is_recfun_fm [of A MH])
 
 theorem is_recfun_reflection:
   assumes MH_reflection:
-    "!!f g h. REFLECTS[\<lambda>x. MH(L, f(x), g(x), h(x)), 
+    "!!f g h. REFLECTS[\<lambda>x. MH(L, f(x), g(x), h(x)),
                      \<lambda>i x. MH(**Lset(i), f(x), g(x), h(x))]"
-  shows "REFLECTS[\<lambda>x. M_is_recfun(L, MH(L), f(x), g(x), h(x)), 
+  shows "REFLECTS[\<lambda>x. M_is_recfun(L, MH(L), f(x), g(x), h(x)),
                \<lambda>i x. M_is_recfun(**Lset(i), MH(**Lset(i)), f(x), g(x), h(x))]"
 apply (simp (no_asm_use) only: M_is_recfun_def setclass_simps)
-apply (intro FOL_reflections function_reflections 
-             restriction_reflection MH_reflection)  
+apply (intro FOL_reflections function_reflections
+             restriction_reflection MH_reflection)
 done
 
 text{*Currently, @{text sats}-theorems for higher-order operators don't seem
@@ -315,12 +317,12 @@
 of the @{text MH}-term.*}
 theorem is_wfrec_reflection:
   assumes MH_reflection:
-    "!!f g h. REFLECTS[\<lambda>x. MH(L, f(x), g(x), h(x)), 
+    "!!f g h. REFLECTS[\<lambda>x. MH(L, f(x), g(x), h(x)),
                      \<lambda>i x. MH(**Lset(i), f(x), g(x), h(x))]"
-  shows "REFLECTS[\<lambda>x. is_wfrec(L, MH(L), f(x), g(x), h(x)), 
+  shows "REFLECTS[\<lambda>x. is_wfrec(L, MH(L), f(x), g(x), h(x)),
                \<lambda>i x. is_wfrec(**Lset(i), MH(**Lset(i)), f(x), g(x), h(x))]"
 apply (simp (no_asm_use) only: is_wfrec_def setclass_simps)
-apply (intro FOL_reflections MH_reflection is_recfun_reflection)  
+apply (intro FOL_reflections MH_reflection is_recfun_reflection)
 done
 
 subsection{*The Locale @{text "M_wfrank"}*}
@@ -331,23 +333,23 @@
  "REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) -->
               ~ (\<exists>f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)),
       \<lambda>i x. \<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) -->
-         ~ (\<exists>f \<in> Lset(i). 
-            M_is_recfun(**Lset(i), %x f y. is_range(**Lset(i),f,y), 
+         ~ (\<exists>f \<in> Lset(i).
+            M_is_recfun(**Lset(i), %x f y. is_range(**Lset(i),f,y),
                         rplus, x, f))]"
-by (intro FOL_reflections function_reflections is_recfun_reflection tran_closure_reflection)  
+by (intro FOL_reflections function_reflections is_recfun_reflection tran_closure_reflection)
 
 lemma wfrank_separation:
      "L(r) ==>
       separation (L, \<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) -->
          ~ (\<exists>f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)))"
-apply (rule separation_CollectI) 
-apply (rule_tac A="{r,z}" in subset_LsetE, blast ) 
+apply (rule separation_CollectI)
+apply (rule_tac A="{r,z}" in subset_LsetE, blast )
 apply (rule ReflectsE [OF wfrank_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2, clarify)
 apply (rule DPow_LsetI)
-apply (rename_tac u)  
+apply (rename_tac u)
 apply (rule ball_iff_sats imp_iff_sats)+
 apply (rule_tac env="[rplus,u,r]" in tran_closure_iff_sats)
 apply (rule sep_rules is_recfun_iff_sats | simp)+
@@ -357,14 +359,14 @@
 subsubsection{*Replacement for @{term "wfrank"}*}
 
 lemma wfrank_replacement_Reflects:
- "REFLECTS[\<lambda>z. \<exists>x[L]. x \<in> A & 
+ "REFLECTS[\<lambda>z. \<exists>x[L]. x \<in> A &
         (\<forall>rplus[L]. tran_closure(L,r,rplus) -->
-         (\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z)  & 
+         (\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z)  &
                         M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &
                         is_range(L,f,y))),
- \<lambda>i z. \<exists>x \<in> Lset(i). x \<in> A & 
+ \<lambda>i z. \<exists>x \<in> Lset(i). x \<in> A &
       (\<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) -->
-       (\<exists>y \<in> Lset(i). \<exists>f \<in> Lset(i). pair(**Lset(i),x,y,z)  & 
+       (\<exists>y \<in> Lset(i). \<exists>f \<in> Lset(i). pair(**Lset(i),x,y,z)  &
          M_is_recfun(**Lset(i), %x f y. is_range(**Lset(i),f,y), rplus, x, f) &
          is_range(**Lset(i),f,y)))]"
 by (intro FOL_reflections function_reflections fun_plus_reflections
@@ -373,24 +375,24 @@
 
 lemma wfrank_strong_replacement:
      "L(r) ==>
-      strong_replacement(L, \<lambda>x z. 
+      strong_replacement(L, \<lambda>x z.
          \<forall>rplus[L]. tran_closure(L,r,rplus) -->
-         (\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z)  & 
+         (\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z)  &
                         M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &
                         is_range(L,f,y)))"
-apply (rule strong_replacementI) 
+apply (rule strong_replacementI)
 apply (rule rallI)
-apply (rename_tac B)  
-apply (rule separation_CollectI) 
-apply (rule_tac A="{B,r,z}" in subset_LsetE, blast ) 
+apply (rename_tac B)
+apply (rule separation_CollectI)
+apply (rule_tac A="{B,r,z}" in subset_LsetE, blast )
 apply (rule ReflectsE [OF wfrank_replacement_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2)
 apply (rule DPow_LsetI)
-apply (rename_tac u) 
+apply (rename_tac u)
 apply (rule bex_iff_sats ball_iff_sats conj_iff_sats)+
-apply (rule_tac env = "[x,u,B,r]" in mem_iff_sats) 
+apply (rule_tac env = "[x,u,B,r]" in mem_iff_sats)
 apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
 done
 
@@ -398,36 +400,36 @@
 subsubsection{*Separation for Proving @{text Ord_wfrank_range}*}
 
 lemma Ord_wfrank_Reflects:
- "REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) --> 
-          ~ (\<forall>f[L]. \<forall>rangef[L]. 
+ "REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) -->
+          ~ (\<forall>f[L]. \<forall>rangef[L].
              is_range(L,f,rangef) -->
              M_is_recfun(L, \<lambda>x f y. is_range(L,f,y), rplus, x, f) -->
              ordinal(L,rangef)),
-      \<lambda>i x. \<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) --> 
-          ~ (\<forall>f \<in> Lset(i). \<forall>rangef \<in> Lset(i). 
+      \<lambda>i x. \<forall>rplus \<in> Lset(i). tran_closure(**Lset(i),r,rplus) -->
+          ~ (\<forall>f \<in> Lset(i). \<forall>rangef \<in> Lset(i).
              is_range(**Lset(i),f,rangef) -->
-             M_is_recfun(**Lset(i), \<lambda>x f y. is_range(**Lset(i),f,y), 
+             M_is_recfun(**Lset(i), \<lambda>x f y. is_range(**Lset(i),f,y),
                          rplus, x, f) -->
              ordinal(**Lset(i),rangef))]"
-by (intro FOL_reflections function_reflections is_recfun_reflection 
+by (intro FOL_reflections function_reflections is_recfun_reflection
           tran_closure_reflection ordinal_reflection)
 
 lemma  Ord_wfrank_separation:
      "L(r) ==>
       separation (L, \<lambda>x.
-         \<forall>rplus[L]. tran_closure(L,r,rplus) --> 
-          ~ (\<forall>f[L]. \<forall>rangef[L]. 
+         \<forall>rplus[L]. tran_closure(L,r,rplus) -->
+          ~ (\<forall>f[L]. \<forall>rangef[L].
              is_range(L,f,rangef) -->
              M_is_recfun(L, \<lambda>x f y. is_range(L,f,y), rplus, x, f) -->
-             ordinal(L,rangef)))" 
-apply (rule separation_CollectI) 
-apply (rule_tac A="{r,z}" in subset_LsetE, blast ) 
+             ordinal(L,rangef)))"
+apply (rule separation_CollectI)
+apply (rule_tac A="{r,z}" in subset_LsetE, blast )
 apply (rule ReflectsE [OF Ord_wfrank_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2, clarify)
 apply (rule DPow_LsetI)
-apply (rename_tac u)  
+apply (rename_tac u)
 apply (rule ball_iff_sats imp_iff_sats)+
 apply (rule_tac env="[rplus,u,r]" in tran_closure_iff_sats)
 apply (rule sep_rules is_recfun_iff_sats | simp)+
@@ -435,40 +437,40 @@
 
 
 subsubsection{*Instantiating the locale @{text M_wfrank}*}
-ML
-{*
-val wfrank_separation = thm "wfrank_separation";
-val wfrank_strong_replacement = thm "wfrank_strong_replacement";
-val Ord_wfrank_separation = thm "Ord_wfrank_separation";
+
+theorem M_wfrank_axioms_L: "M_wfrank_axioms(L)"
+  apply (rule M_wfrank_axioms.intro)
+  apply (assumption | rule
+    wfrank_separation wfrank_strong_replacement Ord_wfrank_separation)+
+  done
 
-val m_wfrank = 
-    [wfrank_separation, wfrank_strong_replacement, Ord_wfrank_separation];
-
-fun wfrank_L th =
-    kill_flex_triv_prems (m_wfrank MRS (trancl_L th));
-
-
+theorem M_wfrank_L: "PROP M_wfrank(L)"
+  apply (rule M_wfrank.intro)
+     apply (rule M_triv_axioms_L)
+    apply (rule M_axioms_axioms_L)
+   apply (rule M_trancl_axioms_L)
+  apply (rule M_wfrank_axioms_L)
+  done
 
-bind_thm ("iterates_closed", wfrank_L (thm "M_wfrank.iterates_closed"));
-bind_thm ("exists_wfrank", wfrank_L (thm "M_wfrank.exists_wfrank"));
-bind_thm ("M_wellfoundedrank", wfrank_L (thm "M_wfrank.M_wellfoundedrank"));
-bind_thm ("Ord_wfrank_range", wfrank_L (thm "M_wfrank.Ord_wfrank_range"));
-bind_thm ("Ord_range_wellfoundedrank", wfrank_L (thm "M_wfrank.Ord_range_wellfoundedrank"));
-bind_thm ("function_wellfoundedrank", wfrank_L (thm "M_wfrank.function_wellfoundedrank"));
-bind_thm ("domain_wellfoundedrank", wfrank_L (thm "M_wfrank.domain_wellfoundedrank"));
-bind_thm ("wellfoundedrank_type", wfrank_L (thm "M_wfrank.wellfoundedrank_type"));
-bind_thm ("Ord_wellfoundedrank", wfrank_L (thm "M_wfrank.Ord_wellfoundedrank"));
-bind_thm ("wellfoundedrank_eq", wfrank_L (thm "M_wfrank.wellfoundedrank_eq"));
-bind_thm ("wellfoundedrank_lt", wfrank_L (thm "M_wfrank.wellfoundedrank_lt"));
-bind_thm ("wellfounded_imp_subset_rvimage", wfrank_L (thm "M_wfrank.wellfounded_imp_subset_rvimage"));
-bind_thm ("wellfounded_imp_wf", wfrank_L (thm "M_wfrank.wellfounded_imp_wf"));
-bind_thm ("wellfounded_on_imp_wf_on", wfrank_L (thm "M_wfrank.wellfounded_on_imp_wf_on"));
-bind_thm ("wf_abs", wfrank_L (thm "M_wfrank.wf_abs"));
-bind_thm ("wf_on_abs", wfrank_L (thm "M_wfrank.wf_on_abs"));
-bind_thm ("wfrec_replacement_iff", wfrank_L (thm "M_wfrank.wfrec_replacement_iff"));
-bind_thm ("trans_wfrec_closed", wfrank_L (thm "M_wfrank.trans_wfrec_closed"));
-bind_thm ("wfrec_closed", wfrank_L (thm "M_wfrank.wfrec_closed"));
-*}
+lemmas iterates_closed = M_wfrank.iterates_closed [OF M_wfrank_L]
+  and exists_wfrank = M_wfrank.exists_wfrank [OF M_wfrank_L]
+  and M_wellfoundedrank = M_wfrank.M_wellfoundedrank [OF M_wfrank_L]
+  and Ord_wfrank_range = M_wfrank.Ord_wfrank_range [OF M_wfrank_L]
+  and Ord_range_wellfoundedrank = M_wfrank.Ord_range_wellfoundedrank [OF M_wfrank_L]
+  and function_wellfoundedrank = M_wfrank.function_wellfoundedrank [OF M_wfrank_L]
+  and domain_wellfoundedrank = M_wfrank.domain_wellfoundedrank [OF M_wfrank_L]
+  and wellfoundedrank_type = M_wfrank.wellfoundedrank_type [OF M_wfrank_L]
+  and Ord_wellfoundedrank = M_wfrank.Ord_wellfoundedrank [OF M_wfrank_L]
+  and wellfoundedrank_eq = M_wfrank.wellfoundedrank_eq [OF M_wfrank_L]
+  and wellfoundedrank_lt = M_wfrank.wellfoundedrank_lt [OF M_wfrank_L]
+  and wellfounded_imp_subset_rvimage = M_wfrank.wellfounded_imp_subset_rvimage [OF M_wfrank_L]
+  and wellfounded_imp_wf = M_wfrank.wellfounded_imp_wf [OF M_wfrank_L]
+  and wellfounded_on_imp_wf_on = M_wfrank.wellfounded_on_imp_wf_on [OF M_wfrank_L]
+  and wf_abs = M_wfrank.wf_abs [OF M_wfrank_L]
+  and wf_on_abs = M_wfrank.wf_on_abs [OF M_wfrank_L]
+  and wfrec_replacement_iff = M_wfrank.wfrec_replacement_iff [OF M_wfrank_L]
+  and trans_wfrec_closed = M_wfrank.trans_wfrec_closed [OF M_wfrank_L]
+  and wfrec_closed = M_wfrank.wfrec_closed [OF M_wfrank_L]
 
 declare iterates_closed [intro,simp]
 declare Ord_wfrank_range [rule_format]
@@ -481,9 +483,9 @@
 subsubsection{*Binary Products, Internalized*}
 
 constdefs cartprod_fm :: "[i,i,i]=>i"
-(* "cartprod(M,A,B,z) == 
-	\<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>B & pair(M,x,y,u)))" *)
-    "cartprod_fm(A,B,z) == 
+(* "cartprod(M,A,B,z) ==
+        \<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & (\<exists>y[M]. y\<in>B & pair(M,x,y,u)))" *)
+    "cartprod_fm(A,B,z) ==
        Forall(Iff(Member(0,succ(z)),
                   Exists(And(Member(0,succ(succ(A))),
                          Exists(And(Member(0,succ(succ(succ(B)))),
@@ -491,74 +493,74 @@
 
 lemma cartprod_type [TC]:
      "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> cartprod_fm(x,y,z) \<in> formula"
-by (simp add: cartprod_fm_def) 
+by (simp add: cartprod_fm_def)
 
 lemma arity_cartprod_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |] 
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
       ==> arity(cartprod_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: cartprod_fm_def succ_Un_distrib [symmetric] Un_ac) 
+by (simp add: cartprod_fm_def succ_Un_distrib [symmetric] Un_ac)
 
 lemma sats_cartprod_fm [simp]:
    "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, cartprod_fm(x,y,z), env) <-> 
+    ==> sats(A, cartprod_fm(x,y,z), env) <->
         cartprod(**A, nth(x,env), nth(y,env), nth(z,env))"
 by (simp add: cartprod_fm_def cartprod_def)
 
 lemma cartprod_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
           i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
        ==> cartprod(**A, x, y, z) <-> sats(A, cartprod_fm(i,j,k), env)"
 by (simp add: sats_cartprod_fm)
 
 theorem cartprod_reflection:
-     "REFLECTS[\<lambda>x. cartprod(L,f(x),g(x),h(x)), 
+     "REFLECTS[\<lambda>x. cartprod(L,f(x),g(x),h(x)),
                \<lambda>i x. cartprod(**Lset(i),f(x),g(x),h(x))]"
 apply (simp only: cartprod_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)  
+apply (intro FOL_reflections pair_reflection)
 done
 
 
 subsubsection{*Binary Sums, Internalized*}
 
-(* "is_sum(M,A,B,Z) == 
-       \<exists>A0[M]. \<exists>n1[M]. \<exists>s1[M]. \<exists>B1[M]. 
+(* "is_sum(M,A,B,Z) ==
+       \<exists>A0[M]. \<exists>n1[M]. \<exists>s1[M]. \<exists>B1[M].
          3      2       1        0
        number1(M,n1) & cartprod(M,n1,A,A0) & upair(M,n1,n1,s1) &
        cartprod(M,s1,B,B1) & union(M,A0,B1,Z)"  *)
 constdefs sum_fm :: "[i,i,i]=>i"
-    "sum_fm(A,B,Z) == 
+    "sum_fm(A,B,Z) ==
        Exists(Exists(Exists(Exists(
-	And(number1_fm(2),
+        And(number1_fm(2),
             And(cartprod_fm(2,A#+4,3),
                 And(upair_fm(2,2,1),
                     And(cartprod_fm(1,B#+4,0), union_fm(3,0,Z#+4)))))))))"
 
 lemma sum_type [TC]:
      "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> sum_fm(x,y,z) \<in> formula"
-by (simp add: sum_fm_def) 
+by (simp add: sum_fm_def)
 
 lemma arity_sum_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |] 
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
       ==> arity(sum_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: sum_fm_def succ_Un_distrib [symmetric] Un_ac) 
+by (simp add: sum_fm_def succ_Un_distrib [symmetric] Un_ac)
 
 lemma sats_sum_fm [simp]:
    "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, sum_fm(x,y,z), env) <-> 
+    ==> sats(A, sum_fm(x,y,z), env) <->
         is_sum(**A, nth(x,env), nth(y,env), nth(z,env))"
 by (simp add: sum_fm_def is_sum_def)
 
 lemma sum_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
           i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
        ==> is_sum(**A, x, y, z) <-> sats(A, sum_fm(i,j,k), env)"
 by simp
 
 theorem sum_reflection:
-     "REFLECTS[\<lambda>x. is_sum(L,f(x),g(x),h(x)), 
+     "REFLECTS[\<lambda>x. is_sum(L,f(x),g(x),h(x)),
                \<lambda>i x. is_sum(**Lset(i),f(x),g(x),h(x))]"
 apply (simp only: is_sum_def setclass_simps)
-apply (intro FOL_reflections function_reflections cartprod_reflection)  
+apply (intro FOL_reflections function_reflections cartprod_reflection)
 done
 
 
@@ -570,11 +572,11 @@
 
 lemma quasinat_type [TC]:
      "x \<in> nat ==> quasinat_fm(x) \<in> formula"
-by (simp add: quasinat_fm_def) 
+by (simp add: quasinat_fm_def)
 
 lemma arity_quasinat_fm [simp]:
      "x \<in> nat ==> arity(quasinat_fm(x)) = succ(x)"
-by (simp add: quasinat_fm_def succ_Un_distrib [symmetric] Un_ac) 
+by (simp add: quasinat_fm_def succ_Un_distrib [symmetric] Un_ac)
 
 lemma sats_quasinat_fm [simp]:
    "[| x \<in> nat; env \<in> list(A)|]
@@ -582,85 +584,85 @@
 by (simp add: quasinat_fm_def is_quasinat_def)
 
 lemma quasinat_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; 
+      "[| nth(i,env) = x; nth(j,env) = y;
           i \<in> nat; env \<in> list(A)|]
        ==> is_quasinat(**A, x) <-> sats(A, quasinat_fm(i), env)"
 by simp
 
 theorem quasinat_reflection:
-     "REFLECTS[\<lambda>x. is_quasinat(L,f(x)), 
+     "REFLECTS[\<lambda>x. is_quasinat(L,f(x)),
                \<lambda>i x. is_quasinat(**Lset(i),f(x))]"
 apply (simp only: is_quasinat_def setclass_simps)
-apply (intro FOL_reflections function_reflections)  
+apply (intro FOL_reflections function_reflections)
 done
 
 
 subsubsection{*The Operator @{term is_nat_case}*}
 
 (* is_nat_case :: "[i=>o, i, [i,i]=>o, i, i] => o"
-    "is_nat_case(M, a, is_b, k, z) == 
+    "is_nat_case(M, a, is_b, k, z) ==
        (empty(M,k) --> z=a) &
        (\<forall>m[M]. successor(M,m,k) --> is_b(m,z)) &
        (is_quasinat(M,k) | empty(M,z))" *)
 text{*The formula @{term is_b} has free variables 1 and 0.*}
 constdefs is_nat_case_fm :: "[i, [i,i]=>i, i, i]=>i"
- "is_nat_case_fm(a,is_b,k,z) == 
+ "is_nat_case_fm(a,is_b,k,z) ==
     And(Implies(empty_fm(k), Equal(z,a)),
-        And(Forall(Implies(succ_fm(0,succ(k)), 
+        And(Forall(Implies(succ_fm(0,succ(k)),
                    Forall(Implies(Equal(0,succ(succ(z))), is_b(1,0))))),
             Or(quasinat_fm(k), empty_fm(z))))"
 
 lemma is_nat_case_type [TC]:
-     "[| is_b(1,0) \<in> formula;  
-         x \<in> nat; y \<in> nat; z \<in> nat |] 
+     "[| is_b(1,0) \<in> formula;
+         x \<in> nat; y \<in> nat; z \<in> nat |]
       ==> is_nat_case_fm(x,is_b,y,z) \<in> formula"
-by (simp add: is_nat_case_fm_def) 
+by (simp add: is_nat_case_fm_def)
 
 lemma arity_is_nat_case_fm [simp]:
-     "[| is_b(1,0) \<in> formula; x \<in> nat; y \<in> nat; z \<in> nat |] 
-      ==> arity(is_nat_case_fm(x,is_b,y,z)) = 
-          succ(x) \<union> succ(y) \<union> succ(z) \<union> (arity(is_b(1,0)) #- 2)" 
-apply (subgoal_tac "arity(is_b(1,0)) \<in> nat")  
+     "[| is_b(1,0) \<in> formula; x \<in> nat; y \<in> nat; z \<in> nat |]
+      ==> arity(is_nat_case_fm(x,is_b,y,z)) =
+          succ(x) \<union> succ(y) \<union> succ(z) \<union> (arity(is_b(1,0)) #- 2)"
+apply (subgoal_tac "arity(is_b(1,0)) \<in> nat")
 apply typecheck
 (*FIXME: could nat_diff_split work?*)
 apply (auto simp add: diff_def raw_diff_succ is_nat_case_fm_def nat_imp_quasinat
                  succ_Un_distrib [symmetric] Un_ac
-                 split: split_nat_case) 
+                 split: split_nat_case)
 done
 
 lemma sats_is_nat_case_fm:
-  assumes is_b_iff_sats: 
-      "!!a b. [| a \<in> A; b \<in> A|] 
+  assumes is_b_iff_sats:
+      "!!a b. [| a \<in> A; b \<in> A|]
               ==> is_b(a,b) <-> sats(A, p(1,0), Cons(b, Cons(a,env)))"
-  shows 
+  shows
       "[|x \<in> nat; y \<in> nat; z < length(env); env \<in> list(A)|]
-       ==> sats(A, is_nat_case_fm(x,p,y,z), env) <-> 
+       ==> sats(A, is_nat_case_fm(x,p,y,z), env) <->
            is_nat_case(**A, nth(x,env), is_b, nth(y,env), nth(z,env))"
-apply (frule lt_length_in_nat, assumption)  
+apply (frule lt_length_in_nat, assumption)
 apply (simp add: is_nat_case_fm_def is_nat_case_def is_b_iff_sats [THEN iff_sym])
 done
 
 lemma is_nat_case_iff_sats:
-  "[| (!!a b. [| a \<in> A; b \<in> A|] 
+  "[| (!!a b. [| a \<in> A; b \<in> A|]
               ==> is_b(a,b) <-> sats(A, p(1,0), Cons(b, Cons(a,env))));
-      nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
+      nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
       i \<in> nat; j \<in> nat; k < length(env); env \<in> list(A)|]
-   ==> is_nat_case(**A, x, is_b, y, z) <-> sats(A, is_nat_case_fm(i,p,j,k), env)" 
+   ==> is_nat_case(**A, x, is_b, y, z) <-> sats(A, is_nat_case_fm(i,p,j,k), env)"
 by (simp add: sats_is_nat_case_fm [of A is_b])
 
 
 text{*The second argument of @{term is_b} gives it direct access to @{term x},
-  which is essential for handling free variable references.  Without this 
+  which is essential for handling free variable references.  Without this
   argument, we cannot prove reflection for @{term iterates_MH}.*}
 theorem is_nat_case_reflection:
   assumes is_b_reflection:
-    "!!h f g. REFLECTS[\<lambda>x. is_b(L, h(x), f(x), g(x)), 
+    "!!h f g. REFLECTS[\<lambda>x. is_b(L, h(x), f(x), g(x)),
                      \<lambda>i x. is_b(**Lset(i), h(x), f(x), g(x))]"
-  shows "REFLECTS[\<lambda>x. is_nat_case(L, f(x), is_b(L,x), g(x), h(x)), 
+  shows "REFLECTS[\<lambda>x. is_nat_case(L, f(x), is_b(L,x), g(x), h(x)),
                \<lambda>i x. is_nat_case(**Lset(i), f(x), is_b(**Lset(i), x), g(x), h(x))]"
 apply (simp (no_asm_use) only: is_nat_case_def setclass_simps)
-apply (intro FOL_reflections function_reflections 
-             restriction_reflection is_b_reflection quasinat_reflection)  
+apply (intro FOL_reflections function_reflections
+             restriction_reflection is_b_reflection quasinat_reflection)
 done
 
 
@@ -672,117 +674,117 @@
         is_nat_case(M, v, \<lambda>m u. \<exists>gm[M]. fun_apply(M,g,m,gm) & isF(gm,u),
                     n, z)" *)
 constdefs iterates_MH_fm :: "[[i,i]=>i, i, i, i, i]=>i"
- "iterates_MH_fm(isF,v,n,g,z) == 
-    is_nat_case_fm(v, 
-      \<lambda>m u. Exists(And(fun_apply_fm(succ(succ(succ(g))),succ(m),0), 
-                     Forall(Implies(Equal(0,succ(succ(u))), isF(1,0))))), 
+ "iterates_MH_fm(isF,v,n,g,z) ==
+    is_nat_case_fm(v,
+      \<lambda>m u. Exists(And(fun_apply_fm(succ(succ(succ(g))),succ(m),0),
+                     Forall(Implies(Equal(0,succ(succ(u))), isF(1,0))))),
       n, z)"
 
 lemma iterates_MH_type [TC]:
-     "[| p(1,0) \<in> formula;  
-         v \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat |] 
+     "[| p(1,0) \<in> formula;
+         v \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat |]
       ==> iterates_MH_fm(p,v,x,y,z) \<in> formula"
-by (simp add: iterates_MH_fm_def) 
+by (simp add: iterates_MH_fm_def)
 
 
 lemma arity_iterates_MH_fm [simp]:
-     "[| p(1,0) \<in> formula; 
-         v \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat |] 
-      ==> arity(iterates_MH_fm(p,v,x,y,z)) = 
+     "[| p(1,0) \<in> formula;
+         v \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat |]
+      ==> arity(iterates_MH_fm(p,v,x,y,z)) =
           succ(v) \<union> succ(x) \<union> succ(y) \<union> succ(z) \<union> (arity(p(1,0)) #- 4)"
 apply (subgoal_tac "arity(p(1,0)) \<in> nat")
 apply typecheck
 apply (simp add: nat_imp_quasinat iterates_MH_fm_def Un_ac
             split: split_nat_case, clarify)
 apply (rename_tac i j)
-apply (drule eq_succ_imp_eq_m1, simp) 
+apply (drule eq_succ_imp_eq_m1, simp)
 apply (drule eq_succ_imp_eq_m1, simp)
 apply (simp add: diff_Un_distrib succ_Un_distrib Un_ac diff_diff_left)
 done
 
 lemma sats_iterates_MH_fm:
-  assumes is_F_iff_sats: 
-      "!!a b c d. [| a \<in> A; b \<in> A; c \<in> A; d \<in> A|] 
+  assumes is_F_iff_sats:
+      "!!a b c d. [| a \<in> A; b \<in> A; c \<in> A; d \<in> A|]
               ==> is_F(a,b) <->
                   sats(A, p(1,0), Cons(b, Cons(a, Cons(c, Cons(d,env)))))"
-  shows 
+  shows
       "[|v \<in> nat; x \<in> nat; y \<in> nat; z < length(env); env \<in> list(A)|]
-       ==> sats(A, iterates_MH_fm(p,v,x,y,z), env) <-> 
+       ==> sats(A, iterates_MH_fm(p,v,x,y,z), env) <->
            iterates_MH(**A, is_F, nth(v,env), nth(x,env), nth(y,env), nth(z,env))"
-by (simp add: iterates_MH_fm_def iterates_MH_def sats_is_nat_case_fm 
+by (simp add: iterates_MH_fm_def iterates_MH_def sats_is_nat_case_fm
               is_F_iff_sats [symmetric])
 
 lemma iterates_MH_iff_sats:
-  "[| (!!a b c d. [| a \<in> A; b \<in> A; c \<in> A; d \<in> A|] 
+  "[| (!!a b c d. [| a \<in> A; b \<in> A; c \<in> A; d \<in> A|]
               ==> is_F(a,b) <->
                   sats(A, p(1,0), Cons(b, Cons(a, Cons(c, Cons(d,env))))));
-      nth(i',env) = v; nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
+      nth(i',env) = v; nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
       i' \<in> nat; i \<in> nat; j \<in> nat; k < length(env); env \<in> list(A)|]
-   ==> iterates_MH(**A, is_F, v, x, y, z) <-> 
+   ==> iterates_MH(**A, is_F, v, x, y, z) <->
        sats(A, iterates_MH_fm(p,i',i,j,k), env)"
-apply (rule iff_sym) 
-apply (rule iff_trans) 
-apply (rule sats_iterates_MH_fm [of A is_F], blast, simp_all) 
+apply (rule iff_sym)
+apply (rule iff_trans)
+apply (rule sats_iterates_MH_fm [of A is_F], blast, simp_all)
 done
 
 theorem iterates_MH_reflection:
   assumes p_reflection:
-    "!!f g h. REFLECTS[\<lambda>x. p(L, f(x), g(x)), 
+    "!!f g h. REFLECTS[\<lambda>x. p(L, f(x), g(x)),
                      \<lambda>i x. p(**Lset(i), f(x), g(x))]"
- shows "REFLECTS[\<lambda>x. iterates_MH(L, p(L), e(x), f(x), g(x), h(x)), 
+ shows "REFLECTS[\<lambda>x. iterates_MH(L, p(L), e(x), f(x), g(x), h(x)),
                \<lambda>i x. iterates_MH(**Lset(i), p(**Lset(i)), e(x), f(x), g(x), h(x))]"
 apply (simp (no_asm_use) only: iterates_MH_def)
 txt{*Must be careful: simplifying with @{text setclass_simps} above would
      change @{text "\<exists>gm[**Lset(i)]"} into @{text "\<exists>gm \<in> Lset(i)"}, when
      it would no longer match rule @{text is_nat_case_reflection}. *}
-apply (rule is_nat_case_reflection) 
+apply (rule is_nat_case_reflection)
 apply (simp (no_asm_use) only: setclass_simps)
 apply (intro FOL_reflections function_reflections is_nat_case_reflection
-             restriction_reflection p_reflection)  
+             restriction_reflection p_reflection)
 done
 
 
 
-subsection{*@{term L} is Closed Under the Operator @{term list}*} 
+subsection{*@{term L} is Closed Under the Operator @{term list}*}
 
 subsubsection{*The List Functor, Internalized*}
 
 constdefs list_functor_fm :: "[i,i,i]=>i"
-(* "is_list_functor(M,A,X,Z) == 
-        \<exists>n1[M]. \<exists>AX[M]. 
+(* "is_list_functor(M,A,X,Z) ==
+        \<exists>n1[M]. \<exists>AX[M].
          number1(M,n1) & cartprod(M,A,X,AX) & is_sum(M,n1,AX,Z)" *)
-    "list_functor_fm(A,X,Z) == 
+    "list_functor_fm(A,X,Z) ==
        Exists(Exists(
-	And(number1_fm(1),
+        And(number1_fm(1),
             And(cartprod_fm(A#+2,X#+2,0), sum_fm(1,0,Z#+2)))))"
 
 lemma list_functor_type [TC]:
      "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> list_functor_fm(x,y,z) \<in> formula"
-by (simp add: list_functor_fm_def) 
+by (simp add: list_functor_fm_def)
 
 lemma arity_list_functor_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |] 
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
       ==> arity(list_functor_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: list_functor_fm_def succ_Un_distrib [symmetric] Un_ac) 
+by (simp add: list_functor_fm_def succ_Un_distrib [symmetric] Un_ac)
 
 lemma sats_list_functor_fm [simp]:
    "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, list_functor_fm(x,y,z), env) <-> 
+    ==> sats(A, list_functor_fm(x,y,z), env) <->
         is_list_functor(**A, nth(x,env), nth(y,env), nth(z,env))"
 by (simp add: list_functor_fm_def is_list_functor_def)
 
 lemma list_functor_iff_sats:
-  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
+  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
       i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
    ==> is_list_functor(**A, x, y, z) <-> sats(A, list_functor_fm(i,j,k), env)"
 by simp
 
 theorem list_functor_reflection:
-     "REFLECTS[\<lambda>x. is_list_functor(L,f(x),g(x),h(x)), 
+     "REFLECTS[\<lambda>x. is_list_functor(L,f(x),g(x),h(x)),
                \<lambda>i x. is_list_functor(**Lset(i),f(x),g(x),h(x))]"
 apply (simp only: is_list_functor_def setclass_simps)
 apply (intro FOL_reflections number1_reflection
-             cartprod_reflection sum_reflection)  
+             cartprod_reflection sum_reflection)
 done
 
 
@@ -793,29 +795,29 @@
    [\<lambda>x. \<exists>u[L]. u \<in> B \<and> (\<exists>y[L]. pair(L,u,y,x) \<and>
          is_wfrec(L, iterates_MH(L, is_list_functor(L,A), 0), memsn, u, y)),
     \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> (\<exists>y \<in> Lset(i). pair(**Lset(i), u, y, x) \<and>
-         is_wfrec(**Lset(i), 
-                  iterates_MH(**Lset(i), 
+         is_wfrec(**Lset(i),
+                  iterates_MH(**Lset(i),
                           is_list_functor(**Lset(i), A), 0), memsn, u, y))]"
-by (intro FOL_reflections function_reflections is_wfrec_reflection 
-          iterates_MH_reflection list_functor_reflection) 
+by (intro FOL_reflections function_reflections is_wfrec_reflection
+          iterates_MH_reflection list_functor_reflection)
 
-lemma list_replacement1: 
+lemma list_replacement1:
    "L(A) ==> iterates_replacement(L, is_list_functor(L,A), 0)"
 apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
-apply (rule strong_replacementI) 
+apply (rule strong_replacementI)
 apply (rule rallI)
-apply (rename_tac B)   
-apply (rule separation_CollectI) 
-apply (insert nonempty) 
-apply (subgoal_tac "L(Memrel(succ(n)))") 
-apply (rule_tac A="{B,A,n,z,0,Memrel(succ(n))}" in subset_LsetE, blast ) 
+apply (rename_tac B)
+apply (rule separation_CollectI)
+apply (insert nonempty)
+apply (subgoal_tac "L(Memrel(succ(n)))")
+apply (rule_tac A="{B,A,n,z,0,Memrel(succ(n))}" in subset_LsetE, blast )
 apply (rule ReflectsE [OF list_replacement1_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2 Memrel_closed)
-apply (elim conjE) 
+apply (elim conjE)
 apply (rule DPow_LsetI)
-apply (rename_tac v) 
+apply (rename_tac v)
 apply (rule bex_iff_sats conj_iff_sats)+
 apply (rule_tac env = "[u,v,A,n,B,0,Memrel(succ(n))]" in mem_iff_sats)
 apply (rule sep_rules | simp)+
@@ -832,34 +834,34 @@
            is_wfrec (L, iterates_MH (L, is_list_functor(L, A), 0),
                               msn, u, x)),
     \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> u \<in> nat \<and>
-         (\<exists>sn \<in> Lset(i). \<exists>msn \<in> Lset(i). 
+         (\<exists>sn \<in> Lset(i). \<exists>msn \<in> Lset(i).
           successor(**Lset(i), u, sn) \<and> membership(**Lset(i), sn, msn) \<and>
-           is_wfrec (**Lset(i), 
+           is_wfrec (**Lset(i),
                  iterates_MH (**Lset(i), is_list_functor(**Lset(i), A), 0),
                      msn, u, x))]"
-by (intro FOL_reflections function_reflections is_wfrec_reflection 
-          iterates_MH_reflection list_functor_reflection) 
+by (intro FOL_reflections function_reflections is_wfrec_reflection
+          iterates_MH_reflection list_functor_reflection)
 
 
-lemma list_replacement2: 
-   "L(A) ==> strong_replacement(L, 
-         \<lambda>n y. n\<in>nat & 
+lemma list_replacement2:
+   "L(A) ==> strong_replacement(L,
+         \<lambda>n y. n\<in>nat &
                (\<exists>sn[L]. \<exists>msn[L]. successor(L,n,sn) & membership(L,sn,msn) &
-               is_wfrec(L, iterates_MH(L,is_list_functor(L,A), 0), 
+               is_wfrec(L, iterates_MH(L,is_list_functor(L,A), 0),
                         msn, n, y)))"
-apply (rule strong_replacementI) 
+apply (rule strong_replacementI)
 apply (rule rallI)
-apply (rename_tac B)   
-apply (rule separation_CollectI) 
-apply (insert nonempty) 
-apply (rule_tac A="{A,B,z,0,nat}" in subset_LsetE) 
-apply (blast intro: L_nat) 
+apply (rename_tac B)
+apply (rule separation_CollectI)
+apply (insert nonempty)
+apply (rule_tac A="{A,B,z,0,nat}" in subset_LsetE)
+apply (blast intro: L_nat)
 apply (rule ReflectsE [OF list_replacement2_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2)
 apply (rule DPow_LsetI)
-apply (rename_tac v) 
+apply (rename_tac v)
 apply (rule bex_iff_sats conj_iff_sats)+
 apply (rule_tac env = "[u,v,A,B,0,nat]" in mem_iff_sats)
 apply (rule sep_rules | simp)+
@@ -868,21 +870,21 @@
 done
 
 
-subsection{*@{term L} is Closed Under the Operator @{term formula}*} 
+subsection{*@{term L} is Closed Under the Operator @{term formula}*}
 
 subsubsection{*The Formula Functor, Internalized*}
 
 constdefs formula_functor_fm :: "[i,i]=>i"
-(*     "is_formula_functor(M,X,Z) == 
-        \<exists>nat'[M]. \<exists>natnat[M]. \<exists>natnatsum[M]. \<exists>XX[M]. \<exists>X3[M]. 
+(*     "is_formula_functor(M,X,Z) ==
+        \<exists>nat'[M]. \<exists>natnat[M]. \<exists>natnatsum[M]. \<exists>XX[M]. \<exists>X3[M].
            4           3               2       1       0
-          omega(M,nat') & cartprod(M,nat',nat',natnat) & 
+          omega(M,nat') & cartprod(M,nat',nat',natnat) &
           is_sum(M,natnat,natnat,natnatsum) &
-          cartprod(M,X,X,XX) & is_sum(M,XX,X,X3) & 
-          is_sum(M,natnatsum,X3,Z)" *) 
-    "formula_functor_fm(X,Z) == 
+          cartprod(M,X,X,XX) & is_sum(M,XX,X,X3) &
+          is_sum(M,natnatsum,X3,Z)" *)
+    "formula_functor_fm(X,Z) ==
        Exists(Exists(Exists(Exists(Exists(
-	And(omega_fm(4),
+        And(omega_fm(4),
          And(cartprod_fm(4,4,3),
           And(sum_fm(3,3,2),
            And(cartprod_fm(X#+5,X#+5,1),
@@ -890,26 +892,26 @@
 
 lemma formula_functor_type [TC]:
      "[| x \<in> nat; y \<in> nat |] ==> formula_functor_fm(x,y) \<in> formula"
-by (simp add: formula_functor_fm_def) 
+by (simp add: formula_functor_fm_def)
 
 lemma sats_formula_functor_fm [simp]:
    "[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, formula_functor_fm(x,y), env) <-> 
+    ==> sats(A, formula_functor_fm(x,y), env) <->
         is_formula_functor(**A, nth(x,env), nth(y,env))"
 by (simp add: formula_functor_fm_def is_formula_functor_def)
 
 lemma formula_functor_iff_sats:
-  "[| nth(i,env) = x; nth(j,env) = y; 
+  "[| nth(i,env) = x; nth(j,env) = y;
       i \<in> nat; j \<in> nat; env \<in> list(A)|]
    ==> is_formula_functor(**A, x, y) <-> sats(A, formula_functor_fm(i,j), env)"
 by simp
 
 theorem formula_functor_reflection:
-     "REFLECTS[\<lambda>x. is_formula_functor(L,f(x),g(x)), 
+     "REFLECTS[\<lambda>x. is_formula_functor(L,f(x),g(x)),
                \<lambda>i x. is_formula_functor(**Lset(i),f(x),g(x))]"
 apply (simp only: is_formula_functor_def setclass_simps)
 apply (intro FOL_reflections omega_reflection
-             cartprod_reflection sum_reflection)  
+             cartprod_reflection sum_reflection)
 done
 
 subsubsection{*Instances of Replacement for Formulas*}
@@ -919,28 +921,28 @@
    [\<lambda>x. \<exists>u[L]. u \<in> B \<and> (\<exists>y[L]. pair(L,u,y,x) \<and>
          is_wfrec(L, iterates_MH(L, is_formula_functor(L), 0), memsn, u, y)),
     \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> (\<exists>y \<in> Lset(i). pair(**Lset(i), u, y, x) \<and>
-         is_wfrec(**Lset(i), 
-                  iterates_MH(**Lset(i), 
+         is_wfrec(**Lset(i),
+                  iterates_MH(**Lset(i),
                           is_formula_functor(**Lset(i)), 0), memsn, u, y))]"
-by (intro FOL_reflections function_reflections is_wfrec_reflection 
-          iterates_MH_reflection formula_functor_reflection) 
+by (intro FOL_reflections function_reflections is_wfrec_reflection
+          iterates_MH_reflection formula_functor_reflection)
 
-lemma formula_replacement1: 
+lemma formula_replacement1:
    "iterates_replacement(L, is_formula_functor(L), 0)"
 apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
-apply (rule strong_replacementI) 
+apply (rule strong_replacementI)
 apply (rule rallI)
-apply (rename_tac B)   
-apply (rule separation_CollectI) 
-apply (insert nonempty) 
-apply (subgoal_tac "L(Memrel(succ(n)))") 
-apply (rule_tac A="{B,n,z,0,Memrel(succ(n))}" in subset_LsetE, blast ) 
+apply (rename_tac B)
+apply (rule separation_CollectI)
+apply (insert nonempty)
+apply (subgoal_tac "L(Memrel(succ(n)))")
+apply (rule_tac A="{B,n,z,0,Memrel(succ(n))}" in subset_LsetE, blast )
 apply (rule ReflectsE [OF formula_replacement1_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2 Memrel_closed)
 apply (rule DPow_LsetI)
-apply (rename_tac v) 
+apply (rename_tac v)
 apply (rule bex_iff_sats conj_iff_sats)+
 apply (rule_tac env = "[u,v,n,B,0,Memrel(succ(n))]" in mem_iff_sats)
 apply (rule sep_rules | simp)+
@@ -957,34 +959,34 @@
            is_wfrec (L, iterates_MH (L, is_formula_functor(L), 0),
                               msn, u, x)),
     \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> u \<in> nat \<and>
-         (\<exists>sn \<in> Lset(i). \<exists>msn \<in> Lset(i). 
+         (\<exists>sn \<in> Lset(i). \<exists>msn \<in> Lset(i).
           successor(**Lset(i), u, sn) \<and> membership(**Lset(i), sn, msn) \<and>
-           is_wfrec (**Lset(i), 
+           is_wfrec (**Lset(i),
                  iterates_MH (**Lset(i), is_formula_functor(**Lset(i)), 0),
                      msn, u, x))]"
-by (intro FOL_reflections function_reflections is_wfrec_reflection 
-          iterates_MH_reflection formula_functor_reflection) 
+by (intro FOL_reflections function_reflections is_wfrec_reflection
+          iterates_MH_reflection formula_functor_reflection)
 
 
-lemma formula_replacement2: 
-   "strong_replacement(L, 
-         \<lambda>n y. n\<in>nat & 
+lemma formula_replacement2:
+   "strong_replacement(L,
+         \<lambda>n y. n\<in>nat &
                (\<exists>sn[L]. \<exists>msn[L]. successor(L,n,sn) & membership(L,sn,msn) &
-               is_wfrec(L, iterates_MH(L,is_formula_functor(L), 0), 
+               is_wfrec(L, iterates_MH(L,is_formula_functor(L), 0),
                         msn, n, y)))"
-apply (rule strong_replacementI) 
+apply (rule strong_replacementI)
 apply (rule rallI)
-apply (rename_tac B)   
-apply (rule separation_CollectI) 
-apply (insert nonempty) 
-apply (rule_tac A="{B,z,0,nat}" in subset_LsetE) 
-apply (blast intro: L_nat) 
+apply (rename_tac B)
+apply (rule separation_CollectI)
+apply (insert nonempty)
+apply (rule_tac A="{B,z,0,nat}" in subset_LsetE)
+apply (blast intro: L_nat)
 apply (rule ReflectsE [OF formula_replacement2_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2)
 apply (rule DPow_LsetI)
-apply (rename_tac v) 
+apply (rename_tac v)
 apply (rule bex_iff_sats conj_iff_sats)+
 apply (rule_tac env = "[u,v,B,0,nat]" in mem_iff_sats)
 apply (rule sep_rules | simp)+
@@ -1006,7 +1008,7 @@
 
 lemma Inl_type [TC]:
      "[| x \<in> nat; z \<in> nat |] ==> Inl_fm(x,z) \<in> formula"
-by (simp add: Inl_fm_def) 
+by (simp add: Inl_fm_def)
 
 lemma sats_Inl_fm [simp]:
    "[| x \<in> nat; z \<in> nat; env \<in> list(A)|]
@@ -1014,16 +1016,16 @@
 by (simp add: Inl_fm_def is_Inl_def)
 
 lemma Inl_iff_sats:
-      "[| nth(i,env) = x; nth(k,env) = z; 
+      "[| nth(i,env) = x; nth(k,env) = z;
           i \<in> nat; k \<in> nat; env \<in> list(A)|]
        ==> is_Inl(**A, x, z) <-> sats(A, Inl_fm(i,k), env)"
 by simp
 
 theorem Inl_reflection:
-     "REFLECTS[\<lambda>x. is_Inl(L,f(x),h(x)), 
+     "REFLECTS[\<lambda>x. is_Inl(L,f(x),h(x)),
                \<lambda>i x. is_Inl(**Lset(i),f(x),h(x))]"
 apply (simp only: is_Inl_def setclass_simps)
-apply (intro FOL_reflections function_reflections)  
+apply (intro FOL_reflections function_reflections)
 done
 
 
@@ -1035,7 +1037,7 @@
 
 lemma Inr_type [TC]:
      "[| x \<in> nat; z \<in> nat |] ==> Inr_fm(x,z) \<in> formula"
-by (simp add: Inr_fm_def) 
+by (simp add: Inr_fm_def)
 
 lemma sats_Inr_fm [simp]:
    "[| x \<in> nat; z \<in> nat; env \<in> list(A)|]
@@ -1043,16 +1045,16 @@
 by (simp add: Inr_fm_def is_Inr_def)
 
 lemma Inr_iff_sats:
-      "[| nth(i,env) = x; nth(k,env) = z; 
+      "[| nth(i,env) = x; nth(k,env) = z;
           i \<in> nat; k \<in> nat; env \<in> list(A)|]
        ==> is_Inr(**A, x, z) <-> sats(A, Inr_fm(i,k), env)"
 by simp
 
 theorem Inr_reflection:
-     "REFLECTS[\<lambda>x. is_Inr(L,f(x),h(x)), 
+     "REFLECTS[\<lambda>x. is_Inr(L,f(x),h(x)),
                \<lambda>i x. is_Inr(**Lset(i),f(x),h(x))]"
 apply (simp only: is_Inr_def setclass_simps)
-apply (intro FOL_reflections function_reflections)  
+apply (intro FOL_reflections function_reflections)
 done
 
 
@@ -1062,9 +1064,9 @@
 
 constdefs Nil_fm :: "i=>i"
     "Nil_fm(x) == Exists(And(empty_fm(0), Inl_fm(0,succ(x))))"
- 
+
 lemma Nil_type [TC]: "x \<in> nat ==> Nil_fm(x) \<in> formula"
-by (simp add: Nil_fm_def) 
+by (simp add: Nil_fm_def)
 
 lemma sats_Nil_fm [simp]:
    "[| x \<in> nat; env \<in> list(A)|]
@@ -1077,10 +1079,10 @@
 by simp
 
 theorem Nil_reflection:
-     "REFLECTS[\<lambda>x. is_Nil(L,f(x)), 
+     "REFLECTS[\<lambda>x. is_Nil(L,f(x)),
                \<lambda>i x. is_Nil(**Lset(i),f(x))]"
 apply (simp only: is_Nil_def setclass_simps)
-apply (intro FOL_reflections function_reflections Inl_reflection)  
+apply (intro FOL_reflections function_reflections Inl_reflection)
 done
 
 
@@ -1089,30 +1091,30 @@
 
 (*  "is_Cons(M,a,l,Z) == \<exists>p[M]. pair(M,a,l,p) & is_Inr(M,p,Z)" *)
 constdefs Cons_fm :: "[i,i,i]=>i"
-    "Cons_fm(a,l,Z) == 
+    "Cons_fm(a,l,Z) ==
        Exists(And(pair_fm(succ(a),succ(l),0), Inr_fm(0,succ(Z))))"
 
 lemma Cons_type [TC]:
      "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> Cons_fm(x,y,z) \<in> formula"
-by (simp add: Cons_fm_def) 
+by (simp add: Cons_fm_def)
 
 lemma sats_Cons_fm [simp]:
    "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, Cons_fm(x,y,z), env) <-> 
+    ==> sats(A, Cons_fm(x,y,z), env) <->
        is_Cons(**A, nth(x,env), nth(y,env), nth(z,env))"
 by (simp add: Cons_fm_def is_Cons_def)
 
 lemma Cons_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z; 
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
           i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
        ==>is_Cons(**A, x, y, z) <-> sats(A, Cons_fm(i,j,k), env)"
 by simp
 
 theorem Cons_reflection:
-     "REFLECTS[\<lambda>x. is_Cons(L,f(x),g(x),h(x)), 
+     "REFLECTS[\<lambda>x. is_Cons(L,f(x),g(x),h(x)),
                \<lambda>i x. is_Cons(**Lset(i),f(x),g(x),h(x))]"
 apply (simp only: is_Cons_def setclass_simps)
-apply (intro FOL_reflections pair_reflection Inr_reflection)  
+apply (intro FOL_reflections pair_reflection Inr_reflection)
 done
 
 subsubsection{*The Formula @{term is_quasilist}, Internalized*}
@@ -1120,11 +1122,11 @@
 (* is_quasilist(M,xs) == is_Nil(M,z) | (\<exists>x[M]. \<exists>l[M]. is_Cons(M,x,l,z))" *)
 
 constdefs quasilist_fm :: "i=>i"
-    "quasilist_fm(x) == 
+    "quasilist_fm(x) ==
        Or(Nil_fm(x), Exists(Exists(Cons_fm(1,0,succ(succ(x))))))"
- 
+
 lemma quasilist_type [TC]: "x \<in> nat ==> quasilist_fm(x) \<in> formula"
-by (simp add: quasilist_fm_def) 
+by (simp add: quasilist_fm_def)
 
 lemma sats_quasilist_fm [simp]:
    "[| x \<in> nat; env \<in> list(A)|]
@@ -1137,10 +1139,10 @@
 by simp
 
 theorem quasilist_reflection:
-     "REFLECTS[\<lambda>x. is_quasilist(L,f(x)), 
+     "REFLECTS[\<lambda>x. is_quasilist(L,f(x)),
                \<lambda>i x. is_quasilist(**Lset(i),f(x))]"
 apply (simp only: is_quasilist_def setclass_simps)
-apply (intro FOL_reflections Nil_reflection Cons_reflection)  
+apply (intro FOL_reflections Nil_reflection Cons_reflection)
 done
 
 
@@ -1149,19 +1151,19 @@
 
 subsubsection{*The Formula @{term is_tl}, Internalized*}
 
-(*     "is_tl(M,xs,T) == 
+(*     "is_tl(M,xs,T) ==
        (is_Nil(M,xs) --> T=xs) &
        (\<forall>x[M]. \<forall>l[M]. ~ is_Cons(M,x,l,xs) | T=l) &
        (is_quasilist(M,xs) | empty(M,T))" *)
 constdefs tl_fm :: "[i,i]=>i"
-    "tl_fm(xs,T) == 
+    "tl_fm(xs,T) ==
        And(Implies(Nil_fm(xs), Equal(T,xs)),
            And(Forall(Forall(Or(Neg(Cons_fm(1,0,xs#+2)), Equal(T#+2,0)))),
                Or(quasilist_fm(xs), empty_fm(T))))"
 
 lemma tl_type [TC]:
      "[| x \<in> nat; y \<in> nat |] ==> tl_fm(x,y) \<in> formula"
-by (simp add: tl_fm_def) 
+by (simp add: tl_fm_def)
 
 lemma sats_tl_fm [simp]:
    "[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
@@ -1175,11 +1177,11 @@
 by simp
 
 theorem tl_reflection:
-     "REFLECTS[\<lambda>x. is_tl(L,f(x),g(x)), 
+     "REFLECTS[\<lambda>x. is_tl(L,f(x),g(x)),
                \<lambda>i x. is_tl(**Lset(i),f(x),g(x))]"
 apply (simp only: is_tl_def setclass_simps)
 apply (intro FOL_reflections Nil_reflection Cons_reflection
-             quasilist_reflection empty_reflection)  
+             quasilist_reflection empty_reflection)
 done
 
 
@@ -1190,27 +1192,27 @@
    [\<lambda>x. \<exists>u[L]. u \<in> B \<and> (\<exists>y[L]. pair(L,u,y,x) \<and>
          is_wfrec(L, iterates_MH(L, is_tl(L), z), memsn, u, y)),
     \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> (\<exists>y \<in> Lset(i). pair(**Lset(i), u, y, x) \<and>
-         is_wfrec(**Lset(i), 
-                  iterates_MH(**Lset(i), 
+         is_wfrec(**Lset(i),
+                  iterates_MH(**Lset(i),
                           is_tl(**Lset(i)), z), memsn, u, y))]"
-by (intro FOL_reflections function_reflections is_wfrec_reflection 
-          iterates_MH_reflection list_functor_reflection tl_reflection) 
+by (intro FOL_reflections function_reflections is_wfrec_reflection
+          iterates_MH_reflection list_functor_reflection tl_reflection)
 
-lemma nth_replacement: 
+lemma nth_replacement:
    "L(w) ==> iterates_replacement(L, %l t. is_tl(L,l,t), w)"
 apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
-apply (rule strong_replacementI) 
-apply (rule rallI)   
-apply (rule separation_CollectI) 
-apply (subgoal_tac "L(Memrel(succ(n)))") 
-apply (rule_tac A="{A,n,w,z,Memrel(succ(n))}" in subset_LsetE, blast ) 
+apply (rule strong_replacementI)
+apply (rule rallI)
+apply (rule separation_CollectI)
+apply (subgoal_tac "L(Memrel(succ(n)))")
+apply (rule_tac A="{A,n,w,z,Memrel(succ(n))}" in subset_LsetE, blast )
 apply (rule ReflectsE [OF nth_replacement_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2 Memrel_closed)
-apply (elim conjE) 
+apply (elim conjE)
 apply (rule DPow_LsetI)
-apply (rename_tac v) 
+apply (rename_tac v)
 apply (rule bex_iff_sats conj_iff_sats)+
 apply (rule_tac env = "[u,v,A,z,w,Memrel(succ(n))]" in mem_iff_sats)
 apply (rule sep_rules | simp)+
@@ -1221,27 +1223,29 @@
 
 
 subsubsection{*Instantiating the locale @{text M_datatypes}*}
-ML
-{*
-val list_replacement1 = thm "list_replacement1"; 
-val list_replacement2 = thm "list_replacement2";
-val formula_replacement1 = thm "formula_replacement1";
-val formula_replacement2 = thm "formula_replacement2";
-val nth_replacement = thm "nth_replacement";
+
+theorem M_datatypes_axioms_L: "M_datatypes_axioms(L)"
+  apply (rule M_datatypes_axioms.intro)
+      apply (assumption | rule
+        list_replacement1 list_replacement2
+        formula_replacement1 formula_replacement2
+        nth_replacement)+
+  done
 
-val m_datatypes = [list_replacement1, list_replacement2, 
-                   formula_replacement1, formula_replacement2, 
-                   nth_replacement];
-
-fun datatypes_L th =
-    kill_flex_triv_prems (m_datatypes MRS (wfrank_L th));
+theorem M_datatypes_L: "PROP M_datatypes(L)"
+  apply (rule M_datatypes.intro)
+      apply (rule M_triv_axioms_L)
+     apply (rule M_axioms_axioms_L)
+    apply (rule M_trancl_axioms_L)
+   apply (rule M_wfrank_axioms_L)
+  apply (rule M_datatypes_axioms_L)
+  done
 
-bind_thm ("list_closed", datatypes_L (thm "M_datatypes.list_closed"));
-bind_thm ("formula_closed", datatypes_L (thm "M_datatypes.formula_closed"));
-bind_thm ("list_abs", datatypes_L (thm "M_datatypes.list_abs"));
-bind_thm ("formula_abs", datatypes_L (thm "M_datatypes.formula_abs"));
-bind_thm ("nth_abs", datatypes_L (thm "M_datatypes.nth_abs"));
-*}
+lemmas list_closed = M_datatypes.list_closed [OF M_datatypes_L]
+  and formula_closed = M_datatypes.formula_closed [OF M_datatypes_L]
+  and list_abs = M_datatypes.list_abs [OF M_datatypes_L]
+  and formula_abs = M_datatypes.formula_abs [OF M_datatypes_L]
+  and nth_abs = M_datatypes.nth_abs [OF M_datatypes_L]
 
 declare list_closed [intro,simp]
 declare formula_closed [intro,simp]
@@ -1250,8 +1254,7 @@
 declare nth_abs [simp]
 
 
-
-subsection{*@{term L} is Closed Under the Operator @{term eclose}*} 
+subsection{*@{term L} is Closed Under the Operator @{term eclose}*}
 
 subsubsection{*Instances of Replacement for @{term eclose}*}
 
@@ -1260,28 +1263,28 @@
    [\<lambda>x. \<exists>u[L]. u \<in> B \<and> (\<exists>y[L]. pair(L,u,y,x) \<and>
          is_wfrec(L, iterates_MH(L, big_union(L), A), memsn, u, y)),
     \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> (\<exists>y \<in> Lset(i). pair(**Lset(i), u, y, x) \<and>
-         is_wfrec(**Lset(i), 
-                  iterates_MH(**Lset(i), big_union(**Lset(i)), A), 
+         is_wfrec(**Lset(i),
+                  iterates_MH(**Lset(i), big_union(**Lset(i)), A),
                   memsn, u, y))]"
-by (intro FOL_reflections function_reflections is_wfrec_reflection 
-          iterates_MH_reflection) 
+by (intro FOL_reflections function_reflections is_wfrec_reflection
+          iterates_MH_reflection)
 
-lemma eclose_replacement1: 
+lemma eclose_replacement1:
    "L(A) ==> iterates_replacement(L, big_union(L), A)"
 apply (unfold iterates_replacement_def wfrec_replacement_def, clarify)
-apply (rule strong_replacementI) 
+apply (rule strong_replacementI)
 apply (rule rallI)
-apply (rename_tac B)   
-apply (rule separation_CollectI) 
-apply (subgoal_tac "L(Memrel(succ(n)))") 
-apply (rule_tac A="{B,A,n,z,Memrel(succ(n))}" in subset_LsetE, blast ) 
+apply (rename_tac B)
+apply (rule separation_CollectI)
+apply (subgoal_tac "L(Memrel(succ(n)))")
+apply (rule_tac A="{B,A,n,z,Memrel(succ(n))}" in subset_LsetE, blast )
 apply (rule ReflectsE [OF eclose_replacement1_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2 Memrel_closed)
-apply (elim conjE) 
+apply (elim conjE)
 apply (rule DPow_LsetI)
-apply (rename_tac v) 
+apply (rename_tac v)
 apply (rule bex_iff_sats conj_iff_sats)+
 apply (rule_tac env = "[u,v,A,n,B,Memrel(succ(n))]" in mem_iff_sats)
 apply (rule sep_rules | simp)+
@@ -1298,33 +1301,33 @@
            is_wfrec (L, iterates_MH (L, big_union(L), A),
                               msn, u, x)),
     \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B \<and> u \<in> nat \<and>
-         (\<exists>sn \<in> Lset(i). \<exists>msn \<in> Lset(i). 
+         (\<exists>sn \<in> Lset(i). \<exists>msn \<in> Lset(i).
           successor(**Lset(i), u, sn) \<and> membership(**Lset(i), sn, msn) \<and>
-           is_wfrec (**Lset(i), 
+           is_wfrec (**Lset(i),
                  iterates_MH (**Lset(i), big_union(**Lset(i)), A),
                      msn, u, x))]"
-by (intro FOL_reflections function_reflections is_wfrec_reflection 
-          iterates_MH_reflection) 
+by (intro FOL_reflections function_reflections is_wfrec_reflection
+          iterates_MH_reflection)
 
 
-lemma eclose_replacement2: 
-   "L(A) ==> strong_replacement(L, 
-         \<lambda>n y. n\<in>nat & 
+lemma eclose_replacement2:
+   "L(A) ==> strong_replacement(L,
+         \<lambda>n y. n\<in>nat &
                (\<exists>sn[L]. \<exists>msn[L]. successor(L,n,sn) & membership(L,sn,msn) &
-               is_wfrec(L, iterates_MH(L,big_union(L), A), 
+               is_wfrec(L, iterates_MH(L,big_union(L), A),
                         msn, n, y)))"
-apply (rule strong_replacementI) 
+apply (rule strong_replacementI)
 apply (rule rallI)
-apply (rename_tac B)   
-apply (rule separation_CollectI) 
-apply (rule_tac A="{A,B,z,nat}" in subset_LsetE) 
-apply (blast intro: L_nat) 
+apply (rename_tac B)
+apply (rule separation_CollectI)
+apply (rule_tac A="{A,B,z,nat}" in subset_LsetE)
+apply (blast intro: L_nat)
 apply (rule ReflectsE [OF eclose_replacement2_Reflects], assumption)
-apply (drule subset_Lset_ltD, assumption) 
+apply (drule subset_Lset_ltD, assumption)
 apply (erule reflection_imp_L_separation)
   apply (simp_all add: lt_Ord2)
 apply (rule DPow_LsetI)
-apply (rename_tac v) 
+apply (rename_tac v)
 apply (rule bex_iff_sats conj_iff_sats)+
 apply (rule_tac env = "[u,v,A,B,nat]" in mem_iff_sats)
 apply (rule sep_rules | simp)+
@@ -1334,22 +1337,23 @@
 
 
 subsubsection{*Instantiating the locale @{text M_eclose}*}
-ML
-{*
-val eclose_replacement1 = thm "eclose_replacement1"; 
-val eclose_replacement2 = thm "eclose_replacement2";
 
-val m_eclose = [eclose_replacement1, eclose_replacement2];
+theorem M_eclose_axioms_L: "M_eclose_axioms(L)"
+  apply (rule M_eclose_axioms.intro)
+   apply (assumption | rule eclose_replacement1 eclose_replacement2)+
+  done
 
-fun eclose_L th =
-    kill_flex_triv_prems (m_eclose MRS (datatypes_L th));
+theorem M_eclose_L: "PROP M_eclose(L)"
+  apply (rule M_eclose.intro)
+       apply (rule M_triv_axioms_L)
+      apply (rule M_axioms_axioms_L)
+     apply (rule M_trancl_axioms_L)
+    apply (rule M_wfrank_axioms_L)
+   apply (rule M_datatypes_axioms_L)
+  apply (rule M_eclose_axioms_L)
+  done
 
-bind_thm ("eclose_closed", eclose_L (thm "M_eclose.eclose_closed"));
-bind_thm ("eclose_abs", eclose_L (thm "M_eclose.eclose_abs"));
-*}
-
-declare eclose_closed [intro,simp]
-declare eclose_abs [intro,simp]
-
+lemmas eclose_closed [intro, simp] = M_eclose.eclose_closed [OF M_eclose_L]
+  and eclose_abs [intro, simp] = M_eclose.eclose_abs [OF M_eclose_L]
 
 end