--- a/src/HOLCF/Pcpo.thy Fri May 08 19:28:11 2009 +0100
+++ b/src/HOLCF/Pcpo.thy Fri May 08 16:19:51 2009 -0700
@@ -46,7 +46,7 @@
lemma lub_range_shift:
"chain Y \<Longrightarrow> (\<Squnion>i. Y (i + j)) = (\<Squnion>i. Y i)"
-apply (rule antisym_less)
+apply (rule below_antisym)
apply (rule lub_range_mono)
apply fast
apply assumption
@@ -54,7 +54,7 @@
apply (rule is_lub_thelub)
apply assumption
apply (rule ub_rangeI)
-apply (rule_tac y="Y (i + j)" in trans_less)
+apply (rule_tac y="Y (i + j)" in below_trans)
apply (erule chain_mono)
apply (rule le_add1)
apply (rule is_ub_thelub)
@@ -66,7 +66,7 @@
apply (rule iffI)
apply (fast intro!: thelubI lub_finch1)
apply (unfold max_in_chain_def)
-apply (safe intro!: antisym_less)
+apply (safe intro!: below_antisym)
apply (fast elim!: chain_mono)
apply (drule sym)
apply (force elim!: is_ub_thelub)
@@ -79,7 +79,7 @@
\<Longrightarrow> (\<Squnion>i. X i) \<sqsubseteq> (\<Squnion>i. Y i)"
apply (erule is_lub_thelub)
apply (rule ub_rangeI)
-apply (rule trans_less)
+apply (rule below_trans)
apply (erule meta_spec)
apply (erule is_ub_thelub)
done
@@ -106,7 +106,7 @@
lemma lub_equal2:
"\<lbrakk>\<exists>j. \<forall>i>j. X i = Y i; chain X; chain Y\<rbrakk>
\<Longrightarrow> (\<Squnion>i. X i) = (\<Squnion>i. Y i)"
- by (blast intro: antisym_less lub_mono2 sym)
+ by (blast intro: below_antisym lub_mono2 sym)
lemma lub_mono3:
"\<lbrakk>chain Y; chain X; \<forall>i. \<exists>j. Y i \<sqsubseteq> X j\<rbrakk>
@@ -115,7 +115,7 @@
apply (rule ub_rangeI)
apply (erule allE)
apply (erule exE)
-apply (erule trans_less)
+apply (erule below_trans)
apply (erule is_ub_thelub)
done
@@ -132,10 +132,10 @@
assumes 1: "\<And>j. chain (\<lambda>i. Y i j)"
assumes 2: "\<And>i. chain (\<lambda>j. Y i j)"
shows "(\<Squnion>i. \<Squnion>j. Y i j) = (\<Squnion>i. Y i i)"
-proof (rule antisym_less)
+proof (rule below_antisym)
have 3: "chain (\<lambda>i. Y i i)"
apply (rule chainI)
- apply (rule trans_less)
+ apply (rule below_trans)
apply (rule chainE [OF 1])
apply (rule chainE [OF 2])
done
@@ -146,7 +146,7 @@
apply (rule ub_rangeI)
apply (rule lub_mono3 [rule_format, OF 2 3])
apply (rule exI)
- apply (rule trans_less)
+ apply (rule below_trans)
apply (rule chain_mono [OF 1 le_maxI1])
apply (rule chain_mono [OF 2 le_maxI2])
done
@@ -185,7 +185,7 @@
apply (rule theI')
apply (rule ex_ex1I)
apply (rule least)
-apply (blast intro: antisym_less)
+apply (blast intro: below_antisym)
done
lemma minimal [iff]: "\<bottom> \<sqsubseteq> x"
@@ -207,7 +207,7 @@
text {* useful lemmas about @{term \<bottom>} *}
-lemma less_UU_iff [simp]: "(x \<sqsubseteq> \<bottom>) = (x = \<bottom>)"
+lemma below_UU_iff [simp]: "(x \<sqsubseteq> \<bottom>) = (x = \<bottom>)"
by (simp add: po_eq_conv)
lemma eq_UU_iff: "(x = \<bottom>) = (x \<sqsubseteq> \<bottom>)"
@@ -287,7 +287,7 @@
apply (blast dest: chain_mono ax_flat)
done
-lemma flat_less_iff:
+lemma flat_below_iff:
shows "(x \<sqsubseteq> y) = (x = \<bottom> \<or> x = y)"
by (safe dest!: ax_flat)
@@ -298,7 +298,7 @@
text {* Discrete cpos *}
-class discrete_cpo = sq_ord +
+class discrete_cpo = below +
assumes discrete_cpo [simp]: "x \<sqsubseteq> y \<longleftrightarrow> x = y"
begin