src/HOL/ex/Higher_Order_Logic.thy
changeset 12360 9c156045c8f2
child 12394 b20a37eb8338
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Higher_Order_Logic.thy	Tue Dec 04 17:59:36 2001 +0100
@@ -0,0 +1,311 @@
+(*  Title:      HOL/ex/Higher_Order_Logic.thy
+    ID:         $Id$
+    Author:     Gertrud Bauer and Markus Wenzel, TU Muenchen
+    License:    GPL (GNU GENERAL PUBLIC LICENSE)
+*)
+
+header {* Foundations of HOL *}
+
+theory Higher_Order_Logic = CPure:
+
+text {*
+  The following theory development demonstrates Higher-Order Logic
+  itself, represented directly within the Pure framework of Isabelle.
+  The ``HOL'' logic given here is essentially that of Gordon
+  \cite{Gordon:1985:HOL}, although we prefer to present basic concepts
+  in a slightly more conventional manner oriented towards plain
+  Natural Deduction.
+*}
+
+
+subsection {* Pure Logic *}
+
+classes type \<subseteq> logic
+defaultsort type
+
+typedecl o
+arities
+  o :: type
+  fun :: (type, type) type
+
+
+subsubsection {* Basic logical connectives *}
+
+judgment
+  Trueprop :: "o \<Rightarrow> prop"    ("_" 5)
+
+consts
+  imp :: "o \<Rightarrow> o \<Rightarrow> o"    (infixr "\<longrightarrow>" 25)
+  All :: "('a \<Rightarrow> o) \<Rightarrow> o"    (binder "\<forall>" 10)
+
+axioms
+  impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
+  impE [dest, trans]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
+  allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x"
+  allE [dest]: "\<forall>x. P x \<Longrightarrow> P a"
+
+
+subsubsection {* Extensional equality *}
+
+consts
+  equal :: "'a \<Rightarrow> 'a \<Rightarrow> o"   (infixl "=" 50)
+
+axioms
+  refl [intro]: "x = x"
+  subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
+  ext [intro]: "(\<And>x. f x = g x) \<Longrightarrow> f = g"
+  iff [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A = B"
+
+theorem sym [elim]: "x = y \<Longrightarrow> y = x"
+proof -
+  assume "x = y"
+  thus "y = x" by (rule subst) (rule refl)
+qed
+
+lemma [trans]: "x = y \<Longrightarrow> P y \<Longrightarrow> P x"
+  by (rule subst) (rule sym)
+
+lemma [trans]: "P x \<Longrightarrow> x = y \<Longrightarrow> P y"
+  by (rule subst)
+
+theorem trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
+  by (rule subst)
+
+theorem iff1 [elim]: "A = B \<Longrightarrow> A \<Longrightarrow> B"
+  by (rule subst)
+
+theorem iff2 [elim]: "A = B \<Longrightarrow> B \<Longrightarrow> A"
+  by (rule subst) (rule sym)
+
+
+subsubsection {* Derived connectives *}
+
+constdefs
+  false :: o    ("\<bottom>")
+  "\<bottom> \<equiv> \<forall>A. A"
+  true :: o    ("\<top>")
+  "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
+  not :: "o \<Rightarrow> o"     ("\<not> _" [40] 40)
+  "not \<equiv> \<lambda>A. A \<longrightarrow> \<bottom>"
+  conj :: "o \<Rightarrow> o \<Rightarrow> o"    (infixr "\<and>" 35)
+  "conj \<equiv> \<lambda>A B. \<forall>C. (A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
+  disj :: "o \<Rightarrow> o \<Rightarrow> o"    (infixr "\<or>" 30)
+  "disj \<equiv> \<lambda>A B. \<forall>C. (A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+  Ex :: "('a \<Rightarrow> o) \<Rightarrow> o"    (binder "\<exists>" 10)
+  "Ex \<equiv> \<lambda>P. \<forall>C. (\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
+
+syntax
+  "_not_equal" :: "'a \<Rightarrow> 'a \<Rightarrow> o"    (infixl "\<noteq>" 50)
+translations
+  "x \<noteq> y"  \<rightleftharpoons>  "\<not> (x = y)"
+
+theorem falseE [elim]: "\<bottom> \<Longrightarrow> A"
+proof (unfold false_def)
+  assume "\<forall>A. A"
+  thus A ..
+qed
+
+theorem trueI [intro]: \<top>
+proof (unfold true_def)
+  show "\<bottom> \<longrightarrow> \<bottom>" ..
+qed
+
+theorem notI [intro]: "(A \<Longrightarrow> \<bottom>) \<Longrightarrow> \<not> A"
+proof (unfold not_def)
+  assume "A \<Longrightarrow> \<bottom>"
+  thus "A \<longrightarrow> \<bottom>" ..
+qed
+
+theorem notE [elim]: "\<not> A \<Longrightarrow> A \<Longrightarrow> B"
+proof (unfold not_def)
+  assume "A \<longrightarrow> \<bottom>"
+  also assume A
+  finally have \<bottom> ..
+  thus B ..
+qed
+
+lemma notE': "A \<Longrightarrow> \<not> A \<Longrightarrow> B"
+  by (rule notE)
+
+lemmas contradiction = notE notE'  -- {* proof by contradiction in any order *}
+
+theorem conjI [intro]: "A \<Longrightarrow> B \<Longrightarrow> A \<and> B"
+proof (unfold conj_def)
+  assume A and B
+  show "\<forall>C. (A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    fix C show "(A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
+    proof
+      assume "A \<longrightarrow> B \<longrightarrow> C"
+      also have A .
+      also have B .
+      finally show C .
+    qed
+  qed
+qed
+
+theorem conjE [elim]: "A \<and> B \<Longrightarrow> (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C"
+proof (unfold conj_def)
+  assume c: "\<forall>C. (A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
+  assume "A \<Longrightarrow> B \<Longrightarrow> C"
+  moreover {
+    from c have "(A \<longrightarrow> B \<longrightarrow> A) \<longrightarrow> A" ..
+    also have "A \<longrightarrow> B \<longrightarrow> A"
+    proof
+      assume A
+      thus "B \<longrightarrow> A" ..
+    qed
+    finally have A .
+  } moreover {
+    from c have "(A \<longrightarrow> B \<longrightarrow> B) \<longrightarrow> B" ..
+    also have "A \<longrightarrow> B \<longrightarrow> B"
+    proof
+      show "B \<longrightarrow> B" ..
+    qed
+    finally have B .
+  } ultimately show C .
+qed
+
+theorem disjI1 [intro]: "A \<Longrightarrow> A \<or> B"
+proof (unfold disj_def)
+  assume A
+  show "\<forall>C. (A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    fix C show "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+    proof
+      assume "A \<longrightarrow> C"
+      also have A .
+      finally have C .
+      thus "(B \<longrightarrow> C) \<longrightarrow> C" ..
+    qed
+  qed
+qed
+
+theorem disjI2 [intro]: "B \<Longrightarrow> A \<or> B"
+proof (unfold disj_def)
+  assume B
+  show "\<forall>C. (A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    fix C show "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+    proof
+      show "(B \<longrightarrow> C) \<longrightarrow> C"
+      proof
+        assume "B \<longrightarrow> C"
+        also have B .
+        finally show C .
+      qed
+    qed
+  qed
+qed
+
+theorem disjE [elim]: "A \<or> B \<Longrightarrow> (A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C"
+proof (unfold disj_def)
+  assume c: "\<forall>C. (A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+  assume r1: "A \<Longrightarrow> C" and r2: "B \<Longrightarrow> C"
+  from c have "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C" ..
+  also have "A \<longrightarrow> C"
+  proof
+    assume A thus C by (rule r1)
+  qed
+  also have "B \<longrightarrow> C"
+  proof
+    assume B thus C by (rule r2)
+  qed
+  finally show C .
+qed
+
+theorem exI [intro]: "P a \<Longrightarrow> \<exists>x. P x"
+proof (unfold Ex_def)
+  assume "P a"
+  show "\<forall>C. (\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    fix C show "(\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
+    proof
+      assume "\<forall>x. P x \<longrightarrow> C"
+      hence "P a \<longrightarrow> C" ..
+      also have "P a" .
+      finally show C .
+    qed
+  qed
+qed
+
+theorem exE [elim]: "\<exists>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> C) \<Longrightarrow> C"
+proof (unfold Ex_def)
+  assume c: "\<forall>C. (\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
+  assume r: "\<And>x. P x \<Longrightarrow> C"
+  from c have "(\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C" ..
+  also have "\<forall>x. P x \<longrightarrow> C"
+  proof
+    fix x show "P x \<longrightarrow> C"
+    proof
+      assume "P x"
+      thus C by (rule r)
+    qed
+  qed
+  finally show C .
+qed
+
+
+subsection {* Classical logic *}
+
+locale classical =
+  assumes classical: "(\<not> A \<Longrightarrow> A) \<Longrightarrow> A"
+
+theorem (in classical)
+  Peirce's_Law: "((A \<longrightarrow> B) \<longrightarrow> A) \<longrightarrow> A"
+proof
+  assume a: "(A \<longrightarrow> B) \<longrightarrow> A"
+  show A
+  proof (rule classical)
+    assume "\<not> A"
+    have "A \<longrightarrow> B"
+    proof
+      assume A
+      thus B by (rule contradiction)
+    qed
+    with a show A ..
+  qed
+qed
+
+theorem (in classical)
+  double_negation: "\<not> \<not> A \<Longrightarrow> A"
+proof -
+  assume "\<not> \<not> A"
+  show A
+  proof (rule classical)
+    assume "\<not> A"
+    thus ?thesis by (rule contradiction)
+  qed
+qed
+
+theorem (in classical)
+  tertium_non_datur: "A \<or> \<not> A"
+proof (rule double_negation)
+  show "\<not> \<not> (A \<or> \<not> A)"
+  proof
+    assume "\<not> (A \<or> \<not> A)"
+    have "\<not> A"
+    proof
+      assume A hence "A \<or> \<not> A" ..
+      thus \<bottom> by (rule contradiction)
+    qed
+    hence "A \<or> \<not> A" ..
+    thus \<bottom> by (rule contradiction)
+  qed
+qed
+
+theorem (in classical)
+  classical_cases: "(A \<Longrightarrow> C) \<Longrightarrow> (\<not> A \<Longrightarrow> C) \<Longrightarrow> C"
+proof -
+  assume r1: "A \<Longrightarrow> C" and r2: "\<not> A \<Longrightarrow> C"
+  from tertium_non_datur show C
+  proof
+    assume A
+    thus ?thesis by (rule r1)
+  next
+    assume "\<not> A"
+    thus ?thesis by (rule r2)
+  qed
+qed
+
+end