--- a/src/HOL/Library/Quotient_Sum.thy Tue Apr 03 14:09:37 2012 +0200
+++ b/src/HOL/Library/Quotient_Sum.thy Tue Apr 03 16:26:48 2012 +0200
@@ -1,4 +1,4 @@
-(* Title: HOL/Library/Quotient_Sum.thy
+(* Title: HOL/Library/Quotient3_Sum.thy
Author: Cezary Kaliszyk and Christian Urban
*)
@@ -55,44 +55,44 @@
by (blast intro: equivpI sum_reflp sum_symp sum_transp elim: equivpE)
lemma sum_quotient [quot_thm]:
- assumes q1: "Quotient R1 Abs1 Rep1"
- assumes q2: "Quotient R2 Abs2 Rep2"
- shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
- apply (rule QuotientI)
+ assumes q1: "Quotient3 R1 Abs1 Rep1"
+ assumes q2: "Quotient3 R2 Abs2 Rep2"
+ shows "Quotient3 (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
+ apply (rule Quotient3I)
apply (simp_all add: sum_map.compositionality comp_def sum_map.identity sum_rel_eq sum_rel_map1 sum_rel_map2
- Quotient_abs_rep [OF q1] Quotient_rel_rep [OF q1] Quotient_abs_rep [OF q2] Quotient_rel_rep [OF q2])
- using Quotient_rel [OF q1] Quotient_rel [OF q2]
+ Quotient3_abs_rep [OF q1] Quotient3_rel_rep [OF q1] Quotient3_abs_rep [OF q2] Quotient3_rel_rep [OF q2])
+ using Quotient3_rel [OF q1] Quotient3_rel [OF q2]
apply (simp add: sum_rel_unfold comp_def split: sum.split)
done
-declare [[map sum = (sum_rel, sum_quotient)]]
+declare [[mapQ3 sum = (sum_rel, sum_quotient)]]
lemma sum_Inl_rsp [quot_respect]:
- assumes q1: "Quotient R1 Abs1 Rep1"
- assumes q2: "Quotient R2 Abs2 Rep2"
+ assumes q1: "Quotient3 R1 Abs1 Rep1"
+ assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(R1 ===> sum_rel R1 R2) Inl Inl"
by auto
lemma sum_Inr_rsp [quot_respect]:
- assumes q1: "Quotient R1 Abs1 Rep1"
- assumes q2: "Quotient R2 Abs2 Rep2"
+ assumes q1: "Quotient3 R1 Abs1 Rep1"
+ assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(R2 ===> sum_rel R1 R2) Inr Inr"
by auto
lemma sum_Inl_prs [quot_preserve]:
- assumes q1: "Quotient R1 Abs1 Rep1"
- assumes q2: "Quotient R2 Abs2 Rep2"
+ assumes q1: "Quotient3 R1 Abs1 Rep1"
+ assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl"
apply(simp add: fun_eq_iff)
- apply(simp add: Quotient_abs_rep[OF q1])
+ apply(simp add: Quotient3_abs_rep[OF q1])
done
lemma sum_Inr_prs [quot_preserve]:
- assumes q1: "Quotient R1 Abs1 Rep1"
- assumes q2: "Quotient R2 Abs2 Rep2"
+ assumes q1: "Quotient3 R1 Abs1 Rep1"
+ assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr"
apply(simp add: fun_eq_iff)
- apply(simp add: Quotient_abs_rep[OF q2])
+ apply(simp add: Quotient3_abs_rep[OF q2])
done
end