--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Quotient_Examples/Lift_DList.thy Tue Apr 03 16:26:48 2012 +0200
@@ -0,0 +1,86 @@
+(* Title: HOL/Quotient_Examples/Lift_DList.thy
+ Author: Ondrej Kuncar
+*)
+
+theory Lift_DList
+imports Main "~~/src/HOL/Library/Quotient_List"
+begin
+
+subsection {* The type of distinct lists *}
+
+typedef (open) 'a dlist = "{xs::'a list. distinct xs}"
+ morphisms list_of_dlist Abs_dlist
+proof
+ show "[] \<in> {xs. distinct xs}" by simp
+qed
+
+setup_lifting type_definition_dlist
+
+text {* Fundamental operations: *}
+
+lift_definition empty :: "'a dlist" is "[]"
+by simp
+
+lift_definition insert :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" is List.insert
+by simp
+
+lift_definition remove :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" is List.remove1
+by simp
+
+lift_definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b dlist" is "\<lambda>f. remdups o List.map f"
+by simp
+
+lift_definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" is List.filter
+by simp
+
+text {* Derived operations: *}
+
+lift_definition null :: "'a dlist \<Rightarrow> bool" is List.null
+by simp
+
+lift_definition member :: "'a dlist \<Rightarrow> 'a \<Rightarrow> bool" is List.member
+by simp
+
+lift_definition length :: "'a dlist \<Rightarrow> nat" is List.length
+by simp
+
+lift_definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" is List.fold
+by simp
+
+lift_definition foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" is List.foldr
+by simp
+
+lift_definition concat :: "'a dlist dlist \<Rightarrow> 'a dlist" is "remdups o List.concat"
+proof -
+ {
+ fix x y
+ have "list_all2 cr_dlist x y \<Longrightarrow>
+ List.map Abs_dlist x = y \<and> list_all2 (Lifting.invariant distinct) x x"
+ unfolding list_all2_def cr_dlist_def by (induction x y rule: list_induct2') auto
+ }
+ note cr = this
+
+ fix x :: "'a list list" and y :: "'a list list"
+ assume a: "(list_all2 cr_dlist OO Lifting.invariant distinct OO (list_all2 cr_dlist)\<inverse>\<inverse>) x y"
+ from a have l_x: "list_all2 (Lifting.invariant distinct) x x" by (auto simp add: cr)
+ from a have l_y: "list_all2 (Lifting.invariant distinct) y y" by (auto simp add: cr)
+ from a have m: "(Lifting.invariant distinct) (List.map Abs_dlist x) (List.map Abs_dlist y)"
+ by (auto simp add: cr)
+
+ have "x = y"
+ proof -
+ have m':"List.map Abs_dlist x = List.map Abs_dlist y" using m unfolding Lifting.invariant_def by simp
+ have dist: "\<And>l. list_all2 (Lifting.invariant distinct) l l \<Longrightarrow> !x. x \<in> (set l) \<longrightarrow> distinct x"
+ unfolding list_all2_def Lifting.invariant_def by (auto simp add: zip_same)
+ from dist[OF l_x] dist[OF l_y] have "inj_on Abs_dlist (set x \<union> set y)" by (intro inj_onI)
+ (metis CollectI UnE Abs_dlist_inverse)
+ with m' show ?thesis by (rule map_inj_on)
+ qed
+ then show "?thesis x y" unfolding Lifting.invariant_def by auto
+qed
+
+text {* We can export code: *}
+
+export_code empty insert remove map filter null member length fold foldr concat in SML
+
+end