src/HOL/Tools/Function/fundef_core.ML
changeset 33103 9d7d0bef2a77
parent 33097 9d501e11084a
parent 33102 e3463e6db704
child 33151 b8f4c2107a62
--- a/src/HOL/Tools/Function/fundef_core.ML	Sat Oct 24 21:30:33 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,956 +0,0 @@
-(*  Title:      HOL/Tools/Function/fundef_core.ML
-    Author:     Alexander Krauss, TU Muenchen
-
-A package for general recursive function definitions:
-Main functionality.
-*)
-
-signature FUNDEF_CORE =
-sig
-    val trace: bool Unsynchronized.ref
-
-    val prepare_fundef : FundefCommon.fundef_config
-                         -> string (* defname *)
-                         -> ((bstring * typ) * mixfix) list (* defined symbol *)
-                         -> ((bstring * typ) list * term list * term * term) list (* specification *)
-                         -> local_theory
-
-                         -> (term   (* f *)
-                             * thm  (* goalstate *)
-                             * (thm -> FundefCommon.fundef_result) (* continuation *)
-                            ) * local_theory
-
-end
-
-structure FundefCore : FUNDEF_CORE =
-struct
-
-val trace = Unsynchronized.ref false;
-fun trace_msg msg = if ! trace then tracing (msg ()) else ();
-
-val boolT = HOLogic.boolT
-val mk_eq = HOLogic.mk_eq
-
-open FundefLib
-open FundefCommon
-
-datatype globals =
-   Globals of {
-         fvar: term,
-         domT: typ,
-         ranT: typ,
-         h: term,
-         y: term,
-         x: term,
-         z: term,
-         a: term,
-         P: term,
-         D: term,
-         Pbool:term
-}
-
-
-datatype rec_call_info =
-  RCInfo of
-  {
-   RIvs: (string * typ) list,  (* Call context: fixes and assumes *)
-   CCas: thm list,
-   rcarg: term,                 (* The recursive argument *)
-
-   llRI: thm,
-   h_assum: term
-  }
-
-
-datatype clause_context =
-  ClauseContext of
-  {
-    ctxt : Proof.context,
-
-    qs : term list,
-    gs : term list,
-    lhs: term,
-    rhs: term,
-
-    cqs: cterm list,
-    ags: thm list,
-    case_hyp : thm
-  }
-
-
-fun transfer_clause_ctx thy (ClauseContext { ctxt, qs, gs, lhs, rhs, cqs, ags, case_hyp }) =
-    ClauseContext { ctxt = ProofContext.transfer thy ctxt,
-                    qs = qs, gs = gs, lhs = lhs, rhs = rhs, cqs = cqs, ags = ags, case_hyp = case_hyp }
-
-
-datatype clause_info =
-  ClauseInfo of
-     {
-      no: int,
-      qglr : ((string * typ) list * term list * term * term),
-      cdata : clause_context,
-
-      tree: FundefCtxTree.ctx_tree,
-      lGI: thm,
-      RCs: rec_call_info list
-     }
-
-
-(* Theory dependencies. *)
-val Pair_inject = @{thm Product_Type.Pair_inject};
-
-val acc_induct_rule = @{thm accp_induct_rule};
-
-val ex1_implies_ex = @{thm FunDef.fundef_ex1_existence};
-val ex1_implies_un = @{thm FunDef.fundef_ex1_uniqueness};
-val ex1_implies_iff = @{thm FunDef.fundef_ex1_iff};
-
-val acc_downward = @{thm accp_downward};
-val accI = @{thm accp.accI};
-val case_split = @{thm HOL.case_split};
-val fundef_default_value = @{thm FunDef.fundef_default_value};
-val not_acc_down = @{thm not_accp_down};
-
-
-
-fun find_calls tree =
-    let
-      fun add_Ri (fixes,assumes) (_ $ arg) _ (_, xs) = ([], (fixes, assumes, arg) :: xs)
-        | add_Ri _ _ _ _ = raise Match
-    in
-      rev (FundefCtxTree.traverse_tree add_Ri tree [])
-    end
-
-
-(** building proof obligations *)
-
-fun mk_compat_proof_obligations domT ranT fvar f glrs =
-    let
-      fun mk_impl ((qs, gs, lhs, rhs),(qs', gs', lhs', rhs')) =
-          let
-            val shift = incr_boundvars (length qs')
-          in
-            Logic.mk_implies
-              (HOLogic.mk_Trueprop (HOLogic.eq_const domT $ shift lhs $ lhs'),
-                HOLogic.mk_Trueprop (HOLogic.eq_const ranT $ shift rhs $ rhs'))
-              |> fold_rev (curry Logic.mk_implies) (map shift gs @ gs')
-              |> fold_rev (fn (n,T) => fn b => Term.all T $ Abs(n,T,b)) (qs @ qs')
-              |> curry abstract_over fvar
-              |> curry subst_bound f
-          end
-    in
-      map mk_impl (unordered_pairs glrs)
-    end
-
-
-fun mk_completeness (Globals {x, Pbool, ...}) clauses qglrs =
-    let
-        fun mk_case (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) =
-            HOLogic.mk_Trueprop Pbool
-                     |> curry Logic.mk_implies (HOLogic.mk_Trueprop (mk_eq (x, lhs)))
-                     |> fold_rev (curry Logic.mk_implies) gs
-                     |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
-    in
-        HOLogic.mk_Trueprop Pbool
-                 |> fold_rev (curry Logic.mk_implies o mk_case) (clauses ~~ qglrs)
-                 |> mk_forall_rename ("x", x)
-                 |> mk_forall_rename ("P", Pbool)
-    end
-
-(** making a context with it's own local bindings **)
-
-fun mk_clause_context x ctxt (pre_qs,pre_gs,pre_lhs,pre_rhs) =
-    let
-      val (qs, ctxt') = Variable.variant_fixes (map fst pre_qs) ctxt
-                                           |>> map2 (fn (_, T) => fn n => Free (n, T)) pre_qs
-
-      val thy = ProofContext.theory_of ctxt'
-
-      fun inst t = subst_bounds (rev qs, t)
-      val gs = map inst pre_gs
-      val lhs = inst pre_lhs
-      val rhs = inst pre_rhs
-
-      val cqs = map (cterm_of thy) qs
-      val ags = map (assume o cterm_of thy) gs
-
-      val case_hyp = assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (x, lhs))))
-    in
-      ClauseContext { ctxt = ctxt', qs = qs, gs = gs, lhs = lhs, rhs = rhs,
-                      cqs = cqs, ags = ags, case_hyp = case_hyp }
-    end
-
-
-(* lowlevel term function. FIXME: remove *)
-fun abstract_over_list vs body =
-  let
-    fun abs lev v tm =
-      if v aconv tm then Bound lev
-      else
-        (case tm of
-          Abs (a, T, t) => Abs (a, T, abs (lev + 1) v t)
-        | t $ u => abs lev v t $ abs lev v u
-        | t => t);
-  in
-    fold_index (fn (i, v) => fn t => abs i v t) vs body
-  end
-
-
-
-fun mk_clause_info globals G f no cdata qglr tree RCs GIntro_thm RIntro_thms =
-    let
-        val Globals {h, fvar, x, ...} = globals
-
-        val ClauseContext { ctxt, qs, cqs, ags, ... } = cdata
-        val cert = Thm.cterm_of (ProofContext.theory_of ctxt)
-
-        (* Instantiate the GIntro thm with "f" and import into the clause context. *)
-        val lGI = GIntro_thm
-                    |> forall_elim (cert f)
-                    |> fold forall_elim cqs
-                    |> fold Thm.elim_implies ags
-
-        fun mk_call_info (rcfix, rcassm, rcarg) RI =
-            let
-                val llRI = RI
-                             |> fold forall_elim cqs
-                             |> fold (forall_elim o cert o Free) rcfix
-                             |> fold Thm.elim_implies ags
-                             |> fold Thm.elim_implies rcassm
-
-                val h_assum =
-                    HOLogic.mk_Trueprop (G $ rcarg $ (h $ rcarg))
-                              |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
-                              |> fold_rev (Logic.all o Free) rcfix
-                              |> Pattern.rewrite_term (ProofContext.theory_of ctxt) [(f, h)] []
-                              |> abstract_over_list (rev qs)
-            in
-                RCInfo {RIvs=rcfix, rcarg=rcarg, CCas=rcassm, llRI=llRI, h_assum=h_assum}
-            end
-
-        val RC_infos = map2 mk_call_info RCs RIntro_thms
-    in
-        ClauseInfo
-            {
-             no=no,
-             cdata=cdata,
-             qglr=qglr,
-
-             lGI=lGI,
-             RCs=RC_infos,
-             tree=tree
-            }
-    end
-
-
-
-
-
-
-
-(* replace this by a table later*)
-fun store_compat_thms 0 thms = []
-  | store_compat_thms n thms =
-    let
-        val (thms1, thms2) = chop n thms
-    in
-        (thms1 :: store_compat_thms (n - 1) thms2)
-    end
-
-(* expects i <= j *)
-fun lookup_compat_thm i j cts =
-    nth (nth cts (i - 1)) (j - i)
-
-(* Returns "Gsi, Gsj, lhs_i = lhs_j |-- rhs_j_f = rhs_i_f" *)
-(* if j < i, then turn around *)
-fun get_compat_thm thy cts i j ctxi ctxj =
-    let
-      val ClauseContext {cqs=cqsi,ags=agsi,lhs=lhsi,...} = ctxi
-      val ClauseContext {cqs=cqsj,ags=agsj,lhs=lhsj,...} = ctxj
-
-      val lhsi_eq_lhsj = cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj)))
-    in if j < i then
-         let
-           val compat = lookup_compat_thm j i cts
-         in
-           compat         (* "!!qj qi. Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
-                |> fold forall_elim (cqsj @ cqsi) (* "Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
-                |> fold Thm.elim_implies agsj
-                |> fold Thm.elim_implies agsi
-                |> Thm.elim_implies ((assume lhsi_eq_lhsj) RS sym) (* "Gsj, Gsi, lhsi = lhsj |-- rhsj = rhsi" *)
-         end
-       else
-         let
-           val compat = lookup_compat_thm i j cts
-         in
-               compat        (* "!!qi qj. Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
-                 |> fold forall_elim (cqsi @ cqsj) (* "Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
-                 |> fold Thm.elim_implies agsi
-                 |> fold Thm.elim_implies agsj
-                 |> Thm.elim_implies (assume lhsi_eq_lhsj)
-                 |> (fn thm => thm RS sym) (* "Gsi, Gsj, lhsi = lhsj |-- rhsj = rhsi" *)
-         end
-    end
-
-
-
-
-(* Generates the replacement lemma in fully quantified form. *)
-fun mk_replacement_lemma thy h ih_elim clause =
-    let
-        val ClauseInfo {cdata=ClauseContext {qs, lhs, rhs, cqs, ags, case_hyp, ...}, RCs, tree, ...} = clause
-        local open Conv in
-        val ih_conv = arg1_conv o arg_conv o arg_conv
-        end
-
-        val ih_elim_case = Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_elim
-
-        val Ris = map (fn RCInfo {llRI, ...} => llRI) RCs
-        val h_assums = map (fn RCInfo {h_assum, ...} => assume (cterm_of thy (subst_bounds (rev qs, h_assum)))) RCs
-
-        val (eql, _) = FundefCtxTree.rewrite_by_tree thy h ih_elim_case (Ris ~~ h_assums) tree
-
-        val replace_lemma = (eql RS meta_eq_to_obj_eq)
-                                |> implies_intr (cprop_of case_hyp)
-                                |> fold_rev (implies_intr o cprop_of) h_assums
-                                |> fold_rev (implies_intr o cprop_of) ags
-                                |> fold_rev forall_intr cqs
-                                |> Thm.close_derivation
-    in
-      replace_lemma
-    end
-
-
-fun mk_uniqueness_clause thy globals f compat_store clausei clausej RLj =
-    let
-        val Globals {h, y, x, fvar, ...} = globals
-        val ClauseInfo {no=i, cdata=cctxi as ClauseContext {ctxt=ctxti, lhs=lhsi, case_hyp, ...}, ...} = clausei
-        val ClauseInfo {no=j, qglr=cdescj, RCs=RCsj, ...} = clausej
-
-        val cctxj as ClauseContext {ags = agsj', lhs = lhsj', rhs = rhsj', qs = qsj', cqs = cqsj', ...}
-            = mk_clause_context x ctxti cdescj
-
-        val rhsj'h = Pattern.rewrite_term thy [(fvar,h)] [] rhsj'
-        val compat = get_compat_thm thy compat_store i j cctxi cctxj
-        val Ghsj' = map (fn RCInfo {h_assum, ...} => assume (cterm_of thy (subst_bounds (rev qsj', h_assum)))) RCsj
-
-        val RLj_import =
-            RLj |> fold forall_elim cqsj'
-                |> fold Thm.elim_implies agsj'
-                |> fold Thm.elim_implies Ghsj'
-
-        val y_eq_rhsj'h = assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (y, rhsj'h))))
-        val lhsi_eq_lhsj' = assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj')))) (* lhs_i = lhs_j' |-- lhs_i = lhs_j' *)
-    in
-        (trans OF [case_hyp, lhsi_eq_lhsj']) (* lhs_i = lhs_j' |-- x = lhs_j' *)
-        |> implies_elim RLj_import (* Rj1' ... Rjk', lhs_i = lhs_j' |-- rhs_j'_h = rhs_j'_f *)
-        |> (fn it => trans OF [it, compat]) (* lhs_i = lhs_j', Gj', Rj1' ... Rjk' |-- rhs_j'_h = rhs_i_f *)
-        |> (fn it => trans OF [y_eq_rhsj'h, it]) (* lhs_i = lhs_j', Gj', Rj1' ... Rjk', y = rhs_j_h' |-- y = rhs_i_f *)
-        |> fold_rev (implies_intr o cprop_of) Ghsj'
-        |> fold_rev (implies_intr o cprop_of) agsj' (* lhs_i = lhs_j' , y = rhs_j_h' |-- Gj', Rj1'...Rjk' ==> y = rhs_i_f *)
-        |> implies_intr (cprop_of y_eq_rhsj'h)
-        |> implies_intr (cprop_of lhsi_eq_lhsj')
-        |> fold_rev forall_intr (cterm_of thy h :: cqsj')
-    end
-
-
-
-fun mk_uniqueness_case ctxt thy globals G f ihyp ih_intro G_cases compat_store clauses rep_lemmas clausei =
-    let
-        val Globals {x, y, ranT, fvar, ...} = globals
-        val ClauseInfo {cdata = ClauseContext {lhs, rhs, qs, cqs, ags, case_hyp, ...}, lGI, RCs, ...} = clausei
-        val rhsC = Pattern.rewrite_term thy [(fvar, f)] [] rhs
-
-        val ih_intro_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ih_intro
-
-        fun prep_RC (RCInfo {llRI, RIvs, CCas, ...}) = (llRI RS ih_intro_case)
-                                                            |> fold_rev (implies_intr o cprop_of) CCas
-                                                            |> fold_rev (forall_intr o cterm_of thy o Free) RIvs
-
-        val existence = fold (curry op COMP o prep_RC) RCs lGI
-
-        val P = cterm_of thy (mk_eq (y, rhsC))
-        val G_lhs_y = assume (cterm_of thy (HOLogic.mk_Trueprop (G $ lhs $ y)))
-
-        val unique_clauses = map2 (mk_uniqueness_clause thy globals f compat_store clausei) clauses rep_lemmas
-
-        val uniqueness = G_cases
-                           |> forall_elim (cterm_of thy lhs)
-                           |> forall_elim (cterm_of thy y)
-                           |> forall_elim P
-                           |> Thm.elim_implies G_lhs_y
-                           |> fold Thm.elim_implies unique_clauses
-                           |> implies_intr (cprop_of G_lhs_y)
-                           |> forall_intr (cterm_of thy y)
-
-        val P2 = cterm_of thy (lambda y (G $ lhs $ y)) (* P2 y := (lhs, y): G *)
-
-        val exactly_one =
-            ex1I |> instantiate' [SOME (ctyp_of thy ranT)] [SOME P2, SOME (cterm_of thy rhsC)]
-                 |> curry (op COMP) existence
-                 |> curry (op COMP) uniqueness
-                 |> simplify (HOL_basic_ss addsimps [case_hyp RS sym])
-                 |> implies_intr (cprop_of case_hyp)
-                 |> fold_rev (implies_intr o cprop_of) ags
-                 |> fold_rev forall_intr cqs
-
-        val function_value =
-            existence
-              |> implies_intr ihyp
-              |> implies_intr (cprop_of case_hyp)
-              |> forall_intr (cterm_of thy x)
-              |> forall_elim (cterm_of thy lhs)
-              |> curry (op RS) refl
-    in
-        (exactly_one, function_value)
-    end
-
-
-
-
-fun prove_stuff ctxt globals G f R clauses complete compat compat_store G_elim f_def =
-    let
-        val Globals {h, domT, ranT, x, ...} = globals
-        val thy = ProofContext.theory_of ctxt
-
-        (* Inductive Hypothesis: !!z. (z,x):R ==> EX!y. (z,y):G *)
-        val ihyp = Term.all domT $ Abs ("z", domT,
-                                   Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
-                                     HOLogic.mk_Trueprop (Const ("Ex1", (ranT --> boolT) --> boolT) $
-                                                             Abs ("y", ranT, G $ Bound 1 $ Bound 0))))
-                       |> cterm_of thy
-
-        val ihyp_thm = assume ihyp |> Thm.forall_elim_vars 0
-        val ih_intro = ihyp_thm RS (f_def RS ex1_implies_ex)
-        val ih_elim = ihyp_thm RS (f_def RS ex1_implies_un)
-                        |> instantiate' [] [NONE, SOME (cterm_of thy h)]
-
-        val _ = trace_msg (K "Proving Replacement lemmas...")
-        val repLemmas = map (mk_replacement_lemma thy h ih_elim) clauses
-
-        val _ = trace_msg (K "Proving cases for unique existence...")
-        val (ex1s, values) =
-            split_list (map (mk_uniqueness_case ctxt thy globals G f ihyp ih_intro G_elim compat_store clauses repLemmas) clauses)
-
-        val _ = trace_msg (K "Proving: Graph is a function")
-        val graph_is_function = complete
-                                  |> Thm.forall_elim_vars 0
-                                  |> fold (curry op COMP) ex1s
-                                  |> implies_intr (ihyp)
-                                  |> implies_intr (cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ x)))
-                                  |> forall_intr (cterm_of thy x)
-                                  |> (fn it => Drule.compose_single (it, 2, acc_induct_rule)) (* "EX! y. (?x,y):G" *)
-                                  |> (fn it => fold (forall_intr o cterm_of thy o Var) (Term.add_vars (prop_of it) []) it)
-
-        val goalstate =  Conjunction.intr graph_is_function complete
-                          |> Thm.close_derivation
-                          |> Goal.protect
-                          |> fold_rev (implies_intr o cprop_of) compat
-                          |> implies_intr (cprop_of complete)
-    in
-      (goalstate, values)
-    end
-
-
-fun define_graph Gname fvar domT ranT clauses RCss lthy =
-    let
-      val GT = domT --> ranT --> boolT
-      val Gvar = Free (the_single (Variable.variant_frees lthy [] [(Gname, GT)]))
-
-      fun mk_GIntro (ClauseContext {qs, gs, lhs, rhs, ...}) RCs =
-          let
-            fun mk_h_assm (rcfix, rcassm, rcarg) =
-                HOLogic.mk_Trueprop (Gvar $ rcarg $ (fvar $ rcarg))
-                          |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
-                          |> fold_rev (Logic.all o Free) rcfix
-          in
-            HOLogic.mk_Trueprop (Gvar $ lhs $ rhs)
-                      |> fold_rev (curry Logic.mk_implies o mk_h_assm) RCs
-                      |> fold_rev (curry Logic.mk_implies) gs
-                      |> fold_rev Logic.all (fvar :: qs)
-          end
-
-      val G_intros = map2 mk_GIntro clauses RCss
-
-      val (GIntro_thms, (G, G_elim, G_induct, lthy)) =
-          FundefInductiveWrap.inductive_def G_intros ((dest_Free Gvar, NoSyn), lthy)
-    in
-      ((G, GIntro_thms, G_elim, G_induct), lthy)
-    end
-
-
-
-fun define_function fdefname (fname, mixfix) domT ranT G default lthy =
-    let
-      val f_def =
-          Abs ("x", domT, Const (@{const_name FunDef.THE_default}, ranT --> (ranT --> boolT) --> ranT) $ (default $ Bound 0) $
-                                Abs ("y", ranT, G $ Bound 1 $ Bound 0))
-              |> Syntax.check_term lthy
-
-      val ((f, (_, f_defthm)), lthy) =
-        LocalTheory.define Thm.internalK ((Binding.name (function_name fname), mixfix), ((Binding.name fdefname, []), f_def)) lthy
-    in
-      ((f, f_defthm), lthy)
-    end
-
-
-fun define_recursion_relation Rname domT ranT fvar f qglrs clauses RCss lthy =
-    let
-
-      val RT = domT --> domT --> boolT
-      val Rvar = Free (the_single (Variable.variant_frees lthy [] [(Rname, RT)]))
-
-      fun mk_RIntro (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) (rcfix, rcassm, rcarg) =
-          HOLogic.mk_Trueprop (Rvar $ rcarg $ lhs)
-                    |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
-                    |> fold_rev (curry Logic.mk_implies) gs
-                    |> fold_rev (Logic.all o Free) rcfix
-                    |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
-                    (* "!!qs xs. CS ==> G => (r, lhs) : R" *)
-
-      val R_intross = map2 (map o mk_RIntro) (clauses ~~ qglrs) RCss
-
-      val (RIntro_thmss, (R, R_elim, _, lthy)) =
-          fold_burrow FundefInductiveWrap.inductive_def R_intross ((dest_Free Rvar, NoSyn), lthy)
-    in
-      ((R, RIntro_thmss, R_elim), lthy)
-    end
-
-
-fun fix_globals domT ranT fvar ctxt =
-    let
-      val ([h, y, x, z, a, D, P, Pbool],ctxt') =
-          Variable.variant_fixes ["h_fd", "y_fd", "x_fd", "z_fd", "a_fd", "D_fd", "P_fd", "Pb_fd"] ctxt
-    in
-      (Globals {h = Free (h, domT --> ranT),
-                y = Free (y, ranT),
-                x = Free (x, domT),
-                z = Free (z, domT),
-                a = Free (a, domT),
-                D = Free (D, domT --> boolT),
-                P = Free (P, domT --> boolT),
-                Pbool = Free (Pbool, boolT),
-                fvar = fvar,
-                domT = domT,
-                ranT = ranT
-               },
-       ctxt')
-    end
-
-
-
-fun inst_RC thy fvar f (rcfix, rcassm, rcarg) =
-    let
-      fun inst_term t = subst_bound(f, abstract_over (fvar, t))
-    in
-      (rcfix, map (assume o cterm_of thy o inst_term o prop_of) rcassm, inst_term rcarg)
-    end
-
-
-
-(**********************************************************
- *                   PROVING THE RULES
- **********************************************************)
-
-fun mk_psimps thy globals R clauses valthms f_iff graph_is_function =
-    let
-      val Globals {domT, z, ...} = globals
-
-      fun mk_psimp (ClauseInfo {qglr = (oqs, _, _, _), cdata = ClauseContext {cqs, lhs, ags, ...}, ...}) valthm =
-          let
-            val lhs_acc = cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ lhs)) (* "acc R lhs" *)
-            val z_smaller = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ lhs)) (* "R z lhs" *)
-          in
-            ((assume z_smaller) RS ((assume lhs_acc) RS acc_downward))
-              |> (fn it => it COMP graph_is_function)
-              |> implies_intr z_smaller
-              |> forall_intr (cterm_of thy z)
-              |> (fn it => it COMP valthm)
-              |> implies_intr lhs_acc
-              |> asm_simplify (HOL_basic_ss addsimps [f_iff])
-              |> fold_rev (implies_intr o cprop_of) ags
-              |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
-          end
-    in
-      map2 mk_psimp clauses valthms
-    end
-
-
-(** Induction rule **)
-
-
-val acc_subset_induct = @{thm Orderings.predicate1I} RS @{thm accp_subset_induct}
-
-
-fun mk_partial_induct_rule thy globals R complete_thm clauses =
-    let
-      val Globals {domT, x, z, a, P, D, ...} = globals
-      val acc_R = mk_acc domT R
-
-      val x_D = assume (cterm_of thy (HOLogic.mk_Trueprop (D $ x)))
-      val a_D = cterm_of thy (HOLogic.mk_Trueprop (D $ a))
-
-      val D_subset = cterm_of thy (Logic.all x
-        (Logic.mk_implies (HOLogic.mk_Trueprop (D $ x), HOLogic.mk_Trueprop (acc_R $ x))))
-
-      val D_dcl = (* "!!x z. [| x: D; (z,x):R |] ==> z:D" *)
-                    Logic.all x
-                    (Logic.all z (Logic.mk_implies (HOLogic.mk_Trueprop (D $ x),
-                                                    Logic.mk_implies (HOLogic.mk_Trueprop (R $ z $ x),
-                                                                      HOLogic.mk_Trueprop (D $ z)))))
-                    |> cterm_of thy
-
-
-  (* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
-      val ihyp = Term.all domT $ Abs ("z", domT,
-               Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
-                 HOLogic.mk_Trueprop (P $ Bound 0)))
-           |> cterm_of thy
-
-      val aihyp = assume ihyp
-
-  fun prove_case clause =
-      let
-    val ClauseInfo {cdata = ClauseContext {ctxt, qs, cqs, ags, gs, lhs, case_hyp, ...}, RCs,
-                    qglr = (oqs, _, _, _), ...} = clause
-
-    val case_hyp_conv = K (case_hyp RS eq_reflection)
-    local open Conv in
-    val lhs_D = fconv_rule (arg_conv (arg_conv (case_hyp_conv))) x_D
-    val sih = fconv_rule (More_Conv.binder_conv (K (arg1_conv (arg_conv (arg_conv case_hyp_conv)))) ctxt) aihyp
-    end
-
-    fun mk_Prec (RCInfo {llRI, RIvs, CCas, rcarg, ...}) =
-        sih |> forall_elim (cterm_of thy rcarg)
-            |> Thm.elim_implies llRI
-            |> fold_rev (implies_intr o cprop_of) CCas
-            |> fold_rev (forall_intr o cterm_of thy o Free) RIvs
-
-    val P_recs = map mk_Prec RCs   (*  [P rec1, P rec2, ... ]  *)
-
-    val step = HOLogic.mk_Trueprop (P $ lhs)
-            |> fold_rev (curry Logic.mk_implies o prop_of) P_recs
-            |> fold_rev (curry Logic.mk_implies) gs
-            |> curry Logic.mk_implies (HOLogic.mk_Trueprop (D $ lhs))
-            |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
-            |> cterm_of thy
-
-    val P_lhs = assume step
-           |> fold forall_elim cqs
-           |> Thm.elim_implies lhs_D
-           |> fold Thm.elim_implies ags
-           |> fold Thm.elim_implies P_recs
-
-    val res = cterm_of thy (HOLogic.mk_Trueprop (P $ x))
-           |> Conv.arg_conv (Conv.arg_conv case_hyp_conv)
-           |> symmetric (* P lhs == P x *)
-           |> (fn eql => equal_elim eql P_lhs) (* "P x" *)
-           |> implies_intr (cprop_of case_hyp)
-           |> fold_rev (implies_intr o cprop_of) ags
-           |> fold_rev forall_intr cqs
-      in
-        (res, step)
-      end
-
-  val (cases, steps) = split_list (map prove_case clauses)
-
-  val istep = complete_thm
-                |> Thm.forall_elim_vars 0
-                |> fold (curry op COMP) cases (*  P x  *)
-                |> implies_intr ihyp
-                |> implies_intr (cprop_of x_D)
-                |> forall_intr (cterm_of thy x)
-
-  val subset_induct_rule =
-      acc_subset_induct
-        |> (curry op COMP) (assume D_subset)
-        |> (curry op COMP) (assume D_dcl)
-        |> (curry op COMP) (assume a_D)
-        |> (curry op COMP) istep
-        |> fold_rev implies_intr steps
-        |> implies_intr a_D
-        |> implies_intr D_dcl
-        |> implies_intr D_subset
-
-  val subset_induct_all = fold_rev (forall_intr o cterm_of thy) [P, a, D] subset_induct_rule
-
-  val simple_induct_rule =
-      subset_induct_rule
-        |> forall_intr (cterm_of thy D)
-        |> forall_elim (cterm_of thy acc_R)
-        |> assume_tac 1 |> Seq.hd
-        |> (curry op COMP) (acc_downward
-                              |> (instantiate' [SOME (ctyp_of thy domT)]
-                                               (map (SOME o cterm_of thy) [R, x, z]))
-                              |> forall_intr (cterm_of thy z)
-                              |> forall_intr (cterm_of thy x))
-        |> forall_intr (cterm_of thy a)
-        |> forall_intr (cterm_of thy P)
-    in
-      simple_induct_rule
-    end
-
-
-
-(* FIXME: This should probably use fixed goals, to be more reliable and faster *)
-fun mk_domain_intro ctxt (Globals {domT, ...}) R R_cases clause =
-    let
-      val thy = ProofContext.theory_of ctxt
-      val ClauseInfo {cdata = ClauseContext {qs, gs, lhs, rhs, cqs, ...},
-                      qglr = (oqs, _, _, _), ...} = clause
-      val goal = HOLogic.mk_Trueprop (mk_acc domT R $ lhs)
-                          |> fold_rev (curry Logic.mk_implies) gs
-                          |> cterm_of thy
-    in
-      Goal.init goal
-      |> (SINGLE (resolve_tac [accI] 1)) |> the
-      |> (SINGLE (eresolve_tac [Thm.forall_elim_vars 0 R_cases] 1))  |> the
-      |> (SINGLE (auto_tac (clasimpset_of ctxt))) |> the
-      |> Goal.conclude
-      |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
-    end
-
-
-
-(** Termination rule **)
-
-val wf_induct_rule = @{thm Wellfounded.wfP_induct_rule};
-val wf_in_rel = @{thm FunDef.wf_in_rel};
-val in_rel_def = @{thm FunDef.in_rel_def};
-
-fun mk_nest_term_case thy globals R' ihyp clause =
-    let
-      val Globals {x, z, ...} = globals
-      val ClauseInfo {cdata = ClauseContext {qs,cqs,ags,lhs,rhs,case_hyp,...},tree,
-                      qglr=(oqs, _, _, _), ...} = clause
-
-      val ih_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ihyp
-
-      fun step (fixes, assumes) (_ $ arg) u (sub,(hyps,thms)) =
-          let
-            val used = map (fn (ctx,thm) => FundefCtxTree.export_thm thy ctx thm) (u @ sub)
-
-            val hyp = HOLogic.mk_Trueprop (R' $ arg $ lhs)
-                      |> fold_rev (curry Logic.mk_implies o prop_of) used (* additional hyps *)
-                      |> FundefCtxTree.export_term (fixes, assumes)
-                      |> fold_rev (curry Logic.mk_implies o prop_of) ags
-                      |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
-                      |> cterm_of thy
-
-            val thm = assume hyp
-                      |> fold forall_elim cqs
-                      |> fold Thm.elim_implies ags
-                      |> FundefCtxTree.import_thm thy (fixes, assumes)
-                      |> fold Thm.elim_implies used (*  "(arg, lhs) : R'"  *)
-
-            val z_eq_arg = assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (z, arg))))
-
-            val acc = thm COMP ih_case
-            val z_acc_local = acc
-            |> Conv.fconv_rule (Conv.arg_conv (Conv.arg_conv (K (symmetric (z_eq_arg RS eq_reflection)))))
-
-            val ethm = z_acc_local
-                         |> FundefCtxTree.export_thm thy (fixes,
-                                                          z_eq_arg :: case_hyp :: ags @ assumes)
-                         |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
-
-            val sub' = sub @ [(([],[]), acc)]
-          in
-            (sub', (hyp :: hyps, ethm :: thms))
-          end
-        | step _ _ _ _ = raise Match
-    in
-      FundefCtxTree.traverse_tree step tree
-    end
-
-
-fun mk_nest_term_rule thy globals R R_cases clauses =
-    let
-      val Globals { domT, x, z, ... } = globals
-      val acc_R = mk_acc domT R
-
-      val R' = Free ("R", fastype_of R)
-
-      val Rrel = Free ("R", HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)))
-      val inrel_R = Const (@{const_name FunDef.in_rel}, HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)) --> fastype_of R) $ Rrel
-
-      val wfR' = cterm_of thy (HOLogic.mk_Trueprop (Const (@{const_name Wellfounded.wfP}, (domT --> domT --> boolT) --> boolT) $ R')) (* "wf R'" *)
-
-      (* Inductive Hypothesis: !!z. (z,x):R' ==> z : acc R *)
-      val ihyp = Term.all domT $ Abs ("z", domT,
-                                 Logic.mk_implies (HOLogic.mk_Trueprop (R' $ Bound 0 $ x),
-                                   HOLogic.mk_Trueprop (acc_R $ Bound 0)))
-                     |> cterm_of thy
-
-      val ihyp_a = assume ihyp |> Thm.forall_elim_vars 0
-
-      val R_z_x = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ x))
-
-      val (hyps,cases) = fold (mk_nest_term_case thy globals R' ihyp_a) clauses ([],[])
-    in
-      R_cases
-        |> forall_elim (cterm_of thy z)
-        |> forall_elim (cterm_of thy x)
-        |> forall_elim (cterm_of thy (acc_R $ z))
-        |> curry op COMP (assume R_z_x)
-        |> fold_rev (curry op COMP) cases
-        |> implies_intr R_z_x
-        |> forall_intr (cterm_of thy z)
-        |> (fn it => it COMP accI)
-        |> implies_intr ihyp
-        |> forall_intr (cterm_of thy x)
-        |> (fn it => Drule.compose_single(it,2,wf_induct_rule))
-        |> curry op RS (assume wfR')
-        |> forall_intr_vars
-        |> (fn it => it COMP allI)
-        |> fold implies_intr hyps
-        |> implies_intr wfR'
-        |> forall_intr (cterm_of thy R')
-        |> forall_elim (cterm_of thy (inrel_R))
-        |> curry op RS wf_in_rel
-        |> full_simplify (HOL_basic_ss addsimps [in_rel_def])
-        |> forall_intr (cterm_of thy Rrel)
-    end
-
-
-
-(* Tail recursion (probably very fragile)
- *
- * FIXME:
- * - Need to do forall_elim_vars on psimps: Unneccesary, if psimps would be taken from the same context.
- * - Must we really replace the fvar by f here?
- * - Splitting is not configured automatically: Problems with case?
- *)
-fun mk_trsimps octxt globals f G R f_def R_cases G_induct clauses psimps =
-    let
-      val Globals {domT, ranT, fvar, ...} = globals
-
-      val R_cases = Thm.forall_elim_vars 0 R_cases (* FIXME: Should be already in standard form. *)
-
-      val graph_implies_dom = (* "G ?x ?y ==> dom ?x"  *)
-          Goal.prove octxt ["x", "y"] [HOLogic.mk_Trueprop (G $ Free ("x", domT) $ Free ("y", ranT))]
-                     (HOLogic.mk_Trueprop (mk_acc domT R $ Free ("x", domT)))
-                     (fn {prems=[a], ...} =>
-                         ((rtac (G_induct OF [a]))
-                            THEN_ALL_NEW (rtac accI)
-                            THEN_ALL_NEW (etac R_cases)
-                            THEN_ALL_NEW (asm_full_simp_tac (simpset_of octxt))) 1)
-
-      val default_thm = (forall_intr_vars graph_implies_dom) COMP (f_def COMP fundef_default_value)
-
-      fun mk_trsimp clause psimp =
-          let
-            val ClauseInfo {qglr = (oqs, _, _, _), cdata = ClauseContext {ctxt, cqs, qs, gs, lhs, rhs, ...}, ...} = clause
-            val thy = ProofContext.theory_of ctxt
-            val rhs_f = Pattern.rewrite_term thy [(fvar, f)] [] rhs
-
-            val trsimp = Logic.list_implies(gs, HOLogic.mk_Trueprop (HOLogic.mk_eq(f $ lhs, rhs_f))) (* "f lhs = rhs" *)
-            val lhs_acc = (mk_acc domT R $ lhs) (* "acc R lhs" *)
-            fun simp_default_tac ss = asm_full_simp_tac (ss addsimps [default_thm, Let_def])
-          in
-            Goal.prove ctxt [] [] trsimp
-                       (fn _ =>
-                           rtac (instantiate' [] [SOME (cterm_of thy lhs_acc)] case_split) 1
-                                THEN (rtac (Thm.forall_elim_vars 0 psimp) THEN_ALL_NEW assume_tac) 1
-                                THEN (simp_default_tac (simpset_of ctxt) 1)
-                                THEN (etac not_acc_down 1)
-                                THEN ((etac R_cases) THEN_ALL_NEW (simp_default_tac (simpset_of ctxt))) 1)
-              |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
-          end
-    in
-      map2 mk_trsimp clauses psimps
-    end
-
-
-fun prepare_fundef config defname [((fname, fT), mixfix)] abstract_qglrs lthy =
-    let
-      val FundefConfig {domintros, tailrec, default=default_str, ...} = config
-
-      val fvar = Free (fname, fT)
-      val domT = domain_type fT
-      val ranT = range_type fT
-
-      val default = Syntax.parse_term lthy default_str
-        |> TypeInfer.constrain fT |> Syntax.check_term lthy
-
-      val (globals, ctxt') = fix_globals domT ranT fvar lthy
-
-      val Globals { x, h, ... } = globals
-
-      val clauses = map (mk_clause_context x ctxt') abstract_qglrs
-
-      val n = length abstract_qglrs
-
-      fun build_tree (ClauseContext { ctxt, rhs, ...}) =
-            FundefCtxTree.mk_tree (fname, fT) h ctxt rhs
-
-      val trees = map build_tree clauses
-      val RCss = map find_calls trees
-
-      val ((G, GIntro_thms, G_elim, G_induct), lthy) =
-          PROFILE "def_graph" (define_graph (graph_name defname) fvar domT ranT clauses RCss) lthy
-
-      val ((f, f_defthm), lthy) =
-          PROFILE "def_fun" (define_function (defname ^ "_sumC_def") (fname, mixfix) domT ranT G default) lthy
-
-      val RCss = map (map (inst_RC (ProofContext.theory_of lthy) fvar f)) RCss
-      val trees = map (FundefCtxTree.inst_tree (ProofContext.theory_of lthy) fvar f) trees
-
-      val ((R, RIntro_thmss, R_elim), lthy) =
-          PROFILE "def_rel" (define_recursion_relation (rel_name defname) domT ranT fvar f abstract_qglrs clauses RCss) lthy
-
-      val (_, lthy) =
-          LocalTheory.abbrev Syntax.mode_default ((Binding.name (dom_name defname), NoSyn), mk_acc domT R) lthy
-
-      val newthy = ProofContext.theory_of lthy
-      val clauses = map (transfer_clause_ctx newthy) clauses
-
-      val cert = cterm_of (ProofContext.theory_of lthy)
-
-      val xclauses = PROFILE "xclauses" (map7 (mk_clause_info globals G f) (1 upto n) clauses abstract_qglrs trees RCss GIntro_thms) RIntro_thmss
-
-      val complete = mk_completeness globals clauses abstract_qglrs |> cert |> assume
-      val compat = mk_compat_proof_obligations domT ranT fvar f abstract_qglrs |> map (cert #> assume)
-
-      val compat_store = store_compat_thms n compat
-
-      val (goalstate, values) = PROFILE "prove_stuff" (prove_stuff lthy globals G f R xclauses complete compat compat_store G_elim) f_defthm
-
-      val mk_trsimps = mk_trsimps lthy globals f G R f_defthm R_elim G_induct xclauses
-
-      fun mk_partial_rules provedgoal =
-          let
-            val newthy = theory_of_thm provedgoal (*FIXME*)
-
-            val (graph_is_function, complete_thm) =
-                provedgoal
-                  |> Conjunction.elim
-                  |> apfst (Thm.forall_elim_vars 0)
-
-            val f_iff = graph_is_function RS (f_defthm RS ex1_implies_iff)
-
-            val psimps = PROFILE "Proving simplification rules" (mk_psimps newthy globals R xclauses values f_iff) graph_is_function
-
-            val simple_pinduct = PROFILE "Proving partial induction rule"
-                                                           (mk_partial_induct_rule newthy globals R complete_thm) xclauses
-
-
-            val total_intro = PROFILE "Proving nested termination rule" (mk_nest_term_rule newthy globals R R_elim) xclauses
-
-            val dom_intros = if domintros
-                             then SOME (PROFILE "Proving domain introduction rules" (map (mk_domain_intro lthy globals R R_elim)) xclauses)
-                             else NONE
-            val trsimps = if tailrec then SOME (mk_trsimps psimps) else NONE
-
-          in
-            FundefResult {fs=[f], G=G, R=R, cases=complete_thm,
-                          psimps=psimps, simple_pinducts=[simple_pinduct],
-                          termination=total_intro, trsimps=trsimps,
-                          domintros=dom_intros}
-          end
-    in
-      ((f, goalstate, mk_partial_rules), lthy)
-    end
-
-
-end