src/ZF/ex/CoUnit.thy
changeset 12228 9e5d3c96111a
parent 11354 9b80fe19407f
child 16417 9bc16273c2d4
--- a/src/ZF/ex/CoUnit.thy	Fri Nov 16 22:09:44 2001 +0100
+++ b/src/ZF/ex/CoUnit.thy	Fri Nov 16 22:10:27 2001 +0100
@@ -2,33 +2,102 @@
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
-
-Trivial codatatype definitions, one of which goes wrong!
-
-See discussion in 
-  L C Paulson.  A Concrete Final Coalgebra Theorem for ZF Set Theory.
-  Report 334,  Cambridge University Computer Laboratory.  1994.
 *)
 
-CoUnit = Main +
+header {* Trivial codatatype definitions, one of which goes wrong! *}
+
+theory CoUnit = Main:
 
-(*This degenerate definition does not work well because the one constructor's
-  definition is trivial!  The same thing occurs with Aczel's Special Final
-  Coalgebra Theorem
-*)
+text {*
+  See discussion in: L C Paulson.  A Concrete Final Coalgebra Theorem
+  for ZF Set Theory.  Report 334, Cambridge University Computer
+  Laboratory.  1994.
+
+  \bigskip
+
+  This degenerate definition does not work well because the one
+  constructor's definition is trivial!  The same thing occurs with
+  Aczel's Special Final Coalgebra Theorem.
+*}
+
 consts
   counit :: i
 codatatype
-  "counit" = Con ("x \\<in> counit")
+  "counit" = Con ("x \<in> counit")
+
+inductive_cases ConE: "Con(x) \<in> counit"
+  -- {* USELESS because folding on @{term "Con(xa) == xa"} fails. *}
+
+lemma Con_iff: "Con(x) = Con(y) <-> x = y"
+  -- {* Proving freeness results. *}
+  by (auto elim!: counit.free_elims)
+
+lemma counit_eq_univ: "counit = quniv(0)"
+  -- {* Should be a singleton, not everything! *}
+  apply (rule counit.dom_subset [THEN equalityI])
+  apply (rule subsetI)
+  apply (erule counit.coinduct)
+   apply (rule subset_refl)
+  apply (unfold counit.con_defs)
+  apply fast
+  done
 
 
-(*A similar example, but the constructor is non-degenerate and it works!
-  The resulting set is a singleton.
-*)
+text {*
+  \medskip A similar example, but the constructor is non-degenerate
+  and it works!  The resulting set is a singleton.
+*}
 
 consts
   counit2 :: i
 codatatype
-  "counit2" = Con2 ("x \\<in> counit2", "y \\<in> counit2")
+  "counit2" = Con2 ("x \<in> counit2", "y \<in> counit2")
+
+
+inductive_cases Con2E: "Con2(x, y) \<in> counit2"
+
+lemma Con2_iff: "Con2(x, y) = Con2(x', y') <-> x = x' & y = y'"
+  -- {* Proving freeness results. *}
+  by (fast elim!: counit2.free_elims)
+
+lemma Con2_bnd_mono: "bnd_mono(univ(0), %x. Con2(x, x))"
+  apply (unfold counit2.con_defs)
+  apply (rule bnd_monoI)
+   apply (assumption | rule subset_refl QPair_subset_univ QPair_mono)+
+  done
+
+lemma lfp_Con2_in_counit2: "lfp(univ(0), %x. Con2(x,x)) \<in> counit2"
+  apply (rule singletonI [THEN counit2.coinduct])
+  apply (rule qunivI [THEN singleton_subsetI])
+  apply (rule subset_trans [OF lfp_subset empty_subsetI [THEN univ_mono]])
+  apply (fast intro!: Con2_bnd_mono [THEN lfp_unfold])
+  done
+
+lemma counit2_Int_Vset_subset [rule_format]:
+  "Ord(i) ==> \<forall>x y. x \<in> counit2 --> y \<in> counit2 --> x Int Vset(i) \<subseteq> y"
+  -- {* Lemma for proving finality. *}
+  apply (erule trans_induct)
+  apply (tactic "safe_tac subset_cs")
+  apply (erule counit2.cases)
+  apply (erule counit2.cases)
+  apply (unfold counit2.con_defs)
+  apply (tactic {* fast_tac (subset_cs
+    addSIs [QPair_Int_Vset_subset_UN RS subset_trans, QPair_mono]
+    addSEs [Ord_in_Ord, Pair_inject]) 1 *})
+  done
+
+lemma counit2_implies_equal: "[| x \<in> counit2;  y \<in> counit2 |] ==> x = y"
+  apply (rule equalityI)
+  apply (assumption | rule conjI counit2_Int_Vset_subset [THEN Int_Vset_subset])+
+  done
+
+lemma counit2_eq_univ: "counit2 = {lfp(univ(0), %x. Con2(x,x))}"
+  apply (rule equalityI)
+   apply (rule_tac [2] lfp_Con2_in_counit2 [THEN singleton_subsetI])
+  apply (rule subsetI)
+  apply (drule lfp_Con2_in_counit2 [THEN counit2_implies_equal])
+  apply (erule subst)
+  apply (rule singletonI)
+  done
 
 end