src/HOL/Library/Permutation.thy
changeset 26316 9e9e67e33557
parent 26072 f65a7fa2da6c
child 27368 9f90ac19e32b
--- a/src/HOL/Library/Permutation.thy	Tue Mar 18 20:33:29 2008 +0100
+++ b/src/HOL/Library/Permutation.thy	Tue Mar 18 20:33:31 2008 +0100
@@ -188,7 +188,7 @@
    apply (subgoal_tac "set (a#list) = set (ysa@a#zs) & distinct (a#list) & distinct (ysa@a#zs)")
     apply (fastsimp simp add: insert_ident)
    apply (metis distinct_remdups set_remdups)
-  apply (metis Nat.le_less_trans Suc_length_conv length_remdups_leq less_Suc_eq nat_less_le)
+  apply (metis le_less_trans Suc_length_conv length_remdups_leq less_Suc_eq nat_less_le)
   done
 
 lemma perm_remdups_iff_eq_set: "remdups x <~~> remdups y = (set x = set y)"