src/HOL/Fields.thy
changeset 35050 9f841f20dca6
parent 35043 07dbdf60d5ad
child 35084 e25eedfc15ce
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Fields.thy	Mon Feb 08 17:12:38 2010 +0100
@@ -0,0 +1,1044 @@
+(*  Title:      HOL/Fields.thy
+    Author:     Gertrud Bauer
+    Author:     Steven Obua
+    Author:     Tobias Nipkow
+    Author:     Lawrence C Paulson
+    Author:     Markus Wenzel
+    Author:     Jeremy Avigad
+*)
+
+header {* Fields *}
+
+theory Fields
+imports Rings
+begin
+
+class field = comm_ring_1 + inverse +
+  assumes field_inverse:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
+  assumes divide_inverse: "a / b = a * inverse b"
+begin
+
+subclass division_ring
+proof
+  fix a :: 'a
+  assume "a \<noteq> 0"
+  thus "inverse a * a = 1" by (rule field_inverse)
+  thus "a * inverse a = 1" by (simp only: mult_commute)
+qed
+
+subclass idom ..
+
+lemma right_inverse_eq: "b \<noteq> 0 \<Longrightarrow> a / b = 1 \<longleftrightarrow> a = b"
+proof
+  assume neq: "b \<noteq> 0"
+  {
+    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
+    also assume "a / b = 1"
+    finally show "a = b" by simp
+  next
+    assume "a = b"
+    with neq show "a / b = 1" by (simp add: divide_inverse)
+  }
+qed
+
+lemma nonzero_inverse_eq_divide: "a \<noteq> 0 \<Longrightarrow> inverse a = 1 / a"
+by (simp add: divide_inverse)
+
+lemma divide_self [simp]: "a \<noteq> 0 \<Longrightarrow> a / a = 1"
+by (simp add: divide_inverse)
+
+lemma divide_zero_left [simp]: "0 / a = 0"
+by (simp add: divide_inverse)
+
+lemma inverse_eq_divide: "inverse a = 1 / a"
+by (simp add: divide_inverse)
+
+lemma add_divide_distrib: "(a+b) / c = a/c + b/c"
+by (simp add: divide_inverse algebra_simps)
+
+text{*There is no slick version using division by zero.*}
+lemma inverse_add:
+  "[| a \<noteq> 0;  b \<noteq> 0 |]
+   ==> inverse a + inverse b = (a + b) * inverse a * inverse b"
+by (simp add: division_ring_inverse_add mult_ac)
+
+lemma nonzero_mult_divide_mult_cancel_left [simp, noatp]:
+assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" shows "(c*a)/(c*b) = a/b"
+proof -
+  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
+    by (simp add: divide_inverse nonzero_inverse_mult_distrib)
+  also have "... =  a * inverse b * (inverse c * c)"
+    by (simp only: mult_ac)
+  also have "... =  a * inverse b" by simp
+    finally show ?thesis by (simp add: divide_inverse)
+qed
+
+lemma nonzero_mult_divide_mult_cancel_right [simp, noatp]:
+  "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (a * c) / (b * c) = a / b"
+by (simp add: mult_commute [of _ c])
+
+lemma divide_1 [simp]: "a / 1 = a"
+by (simp add: divide_inverse)
+
+lemma times_divide_eq_right: "a * (b / c) = (a * b) / c"
+by (simp add: divide_inverse mult_assoc)
+
+lemma times_divide_eq_left: "(b / c) * a = (b * a) / c"
+by (simp add: divide_inverse mult_ac)
+
+text {* These are later declared as simp rules. *}
+lemmas times_divide_eq [noatp] = times_divide_eq_right times_divide_eq_left
+
+lemma add_frac_eq:
+  assumes "y \<noteq> 0" and "z \<noteq> 0"
+  shows "x / y + w / z = (x * z + w * y) / (y * z)"
+proof -
+  have "x / y + w / z = (x * z) / (y * z) + (y * w) / (y * z)"
+    using assms by simp
+  also have "\<dots> = (x * z + y * w) / (y * z)"
+    by (simp only: add_divide_distrib)
+  finally show ?thesis
+    by (simp only: mult_commute)
+qed
+
+text{*Special Cancellation Simprules for Division*}
+
+lemma nonzero_mult_divide_cancel_right [simp, noatp]:
+  "b \<noteq> 0 \<Longrightarrow> a * b / b = a"
+using nonzero_mult_divide_mult_cancel_right [of 1 b a] by simp
+
+lemma nonzero_mult_divide_cancel_left [simp, noatp]:
+  "a \<noteq> 0 \<Longrightarrow> a * b / a = b"
+using nonzero_mult_divide_mult_cancel_left [of 1 a b] by simp
+
+lemma nonzero_divide_mult_cancel_right [simp, noatp]:
+  "\<lbrakk>a \<noteq> 0; b \<noteq> 0\<rbrakk> \<Longrightarrow> b / (a * b) = 1 / a"
+using nonzero_mult_divide_mult_cancel_right [of a b 1] by simp
+
+lemma nonzero_divide_mult_cancel_left [simp, noatp]:
+  "\<lbrakk>a \<noteq> 0; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / (a * b) = 1 / b"
+using nonzero_mult_divide_mult_cancel_left [of b a 1] by simp
+
+lemma nonzero_mult_divide_mult_cancel_left2 [simp, noatp]:
+  "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (c * a) / (b * c) = a / b"
+using nonzero_mult_divide_mult_cancel_left [of b c a] by (simp add: mult_ac)
+
+lemma nonzero_mult_divide_mult_cancel_right2 [simp, noatp]:
+  "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (a * c) / (c * b) = a / b"
+using nonzero_mult_divide_mult_cancel_right [of b c a] by (simp add: mult_ac)
+
+lemma minus_divide_left: "- (a / b) = (-a) / b"
+by (simp add: divide_inverse)
+
+lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a / b) = a / (- b)"
+by (simp add: divide_inverse nonzero_inverse_minus_eq)
+
+lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a) / (-b) = a / b"
+by (simp add: divide_inverse nonzero_inverse_minus_eq)
+
+lemma divide_minus_left [simp, noatp]: "(-a) / b = - (a / b)"
+by (simp add: divide_inverse)
+
+lemma diff_divide_distrib: "(a - b) / c = a / c - b / c"
+by (simp add: diff_minus add_divide_distrib)
+
+lemma add_divide_eq_iff:
+  "z \<noteq> 0 \<Longrightarrow> x + y / z = (z * x + y) / z"
+by (simp add: add_divide_distrib)
+
+lemma divide_add_eq_iff:
+  "z \<noteq> 0 \<Longrightarrow> x / z + y = (x + z * y) / z"
+by (simp add: add_divide_distrib)
+
+lemma diff_divide_eq_iff:
+  "z \<noteq> 0 \<Longrightarrow> x - y / z = (z * x - y) / z"
+by (simp add: diff_divide_distrib)
+
+lemma divide_diff_eq_iff:
+  "z \<noteq> 0 \<Longrightarrow> x / z - y = (x - z * y) / z"
+by (simp add: diff_divide_distrib)
+
+lemma nonzero_eq_divide_eq: "c \<noteq> 0 \<Longrightarrow> a = b / c \<longleftrightarrow> a * c = b"
+proof -
+  assume [simp]: "c \<noteq> 0"
+  have "a = b / c \<longleftrightarrow> a * c = (b / c) * c" by simp
+  also have "... \<longleftrightarrow> a * c = b" by (simp add: divide_inverse mult_assoc)
+  finally show ?thesis .
+qed
+
+lemma nonzero_divide_eq_eq: "c \<noteq> 0 \<Longrightarrow> b / c = a \<longleftrightarrow> b = a * c"
+proof -
+  assume [simp]: "c \<noteq> 0"
+  have "b / c = a \<longleftrightarrow> (b / c) * c = a * c" by simp
+  also have "... \<longleftrightarrow> b = a * c" by (simp add: divide_inverse mult_assoc) 
+  finally show ?thesis .
+qed
+
+lemma divide_eq_imp: "c \<noteq> 0 \<Longrightarrow> b = a * c \<Longrightarrow> b / c = a"
+by simp
+
+lemma eq_divide_imp: "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b / c"
+by (erule subst, simp)
+
+lemmas field_eq_simps[noatp] = algebra_simps
+  (* pull / out*)
+  add_divide_eq_iff divide_add_eq_iff
+  diff_divide_eq_iff divide_diff_eq_iff
+  (* multiply eqn *)
+  nonzero_eq_divide_eq nonzero_divide_eq_eq
+(* is added later:
+  times_divide_eq_left times_divide_eq_right
+*)
+
+text{*An example:*}
+lemma "\<lbrakk>a\<noteq>b; c\<noteq>d; e\<noteq>f\<rbrakk> \<Longrightarrow> ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) = 1"
+apply(subgoal_tac "(c-d)*(e-f)*(a-b) \<noteq> 0")
+ apply(simp add:field_eq_simps)
+apply(simp)
+done
+
+lemma diff_frac_eq:
+  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y - w / z = (x * z - w * y) / (y * z)"
+by (simp add: field_eq_simps times_divide_eq)
+
+lemma frac_eq_eq:
+  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> (x / y = w / z) = (x * z = w * y)"
+by (simp add: field_eq_simps times_divide_eq)
+
+end
+
+class division_by_zero = zero + inverse +
+  assumes inverse_zero [simp]: "inverse 0 = 0"
+
+lemma divide_zero [simp]:
+  "a / 0 = (0::'a::{field,division_by_zero})"
+by (simp add: divide_inverse)
+
+lemma divide_self_if [simp]:
+  "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
+by simp
+
+class linordered_field = field + linordered_idom
+
+lemma inverse_nonzero_iff_nonzero [simp]:
+   "(inverse a = 0) = (a = (0::'a::{division_ring,division_by_zero}))"
+by (force dest: inverse_zero_imp_zero) 
+
+lemma inverse_minus_eq [simp]:
+   "inverse(-a) = -inverse(a::'a::{division_ring,division_by_zero})"
+proof cases
+  assume "a=0" thus ?thesis by (simp add: inverse_zero)
+next
+  assume "a\<noteq>0" 
+  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
+qed
+
+lemma inverse_eq_imp_eq:
+  "inverse a = inverse b ==> a = (b::'a::{division_ring,division_by_zero})"
+apply (cases "a=0 | b=0") 
+ apply (force dest!: inverse_zero_imp_zero
+              simp add: eq_commute [of "0::'a"])
+apply (force dest!: nonzero_inverse_eq_imp_eq) 
+done
+
+lemma inverse_eq_iff_eq [simp]:
+  "(inverse a = inverse b) = (a = (b::'a::{division_ring,division_by_zero}))"
+by (force dest!: inverse_eq_imp_eq)
+
+lemma inverse_inverse_eq [simp]:
+     "inverse(inverse (a::'a::{division_ring,division_by_zero})) = a"
+  proof cases
+    assume "a=0" thus ?thesis by simp
+  next
+    assume "a\<noteq>0" 
+    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
+  qed
+
+text{*This version builds in division by zero while also re-orienting
+      the right-hand side.*}
+lemma inverse_mult_distrib [simp]:
+     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
+  proof cases
+    assume "a \<noteq> 0 & b \<noteq> 0" 
+    thus ?thesis by (simp add: nonzero_inverse_mult_distrib mult_commute)
+  next
+    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
+    thus ?thesis by force
+  qed
+
+lemma inverse_divide [simp]:
+  "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
+by (simp add: divide_inverse mult_commute)
+
+
+subsection {* Calculations with fractions *}
+
+text{* There is a whole bunch of simp-rules just for class @{text
+field} but none for class @{text field} and @{text nonzero_divides}
+because the latter are covered by a simproc. *}
+
+lemma mult_divide_mult_cancel_left:
+  "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
+apply (cases "b = 0")
+apply (simp_all add: nonzero_mult_divide_mult_cancel_left)
+done
+
+lemma mult_divide_mult_cancel_right:
+  "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
+apply (cases "b = 0")
+apply (simp_all add: nonzero_mult_divide_mult_cancel_right)
+done
+
+lemma divide_divide_eq_right [simp,noatp]:
+  "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
+by (simp add: divide_inverse mult_ac)
+
+lemma divide_divide_eq_left [simp,noatp]:
+  "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
+by (simp add: divide_inverse mult_assoc)
+
+
+subsubsection{*Special Cancellation Simprules for Division*}
+
+lemma mult_divide_mult_cancel_left_if[simp,noatp]:
+fixes c :: "'a :: {field,division_by_zero}"
+shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)"
+by (simp add: mult_divide_mult_cancel_left)
+
+
+subsection {* Division and Unary Minus *}
+
+lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
+by (simp add: divide_inverse)
+
+lemma divide_minus_right [simp, noatp]:
+  "a / -(b::'a::{field,division_by_zero}) = -(a / b)"
+by (simp add: divide_inverse)
+
+lemma minus_divide_divide:
+  "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
+apply (cases "b=0", simp) 
+apply (simp add: nonzero_minus_divide_divide) 
+done
+
+lemma eq_divide_eq:
+  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
+by (simp add: nonzero_eq_divide_eq)
+
+lemma divide_eq_eq:
+  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
+by (force simp add: nonzero_divide_eq_eq)
+
+
+subsection {* Ordered Fields *}
+
+lemma positive_imp_inverse_positive: 
+assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::linordered_field)"
+proof -
+  have "0 < a * inverse a" 
+    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
+  thus "0 < inverse a" 
+    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
+qed
+
+lemma negative_imp_inverse_negative:
+  "a < 0 ==> inverse a < (0::'a::linordered_field)"
+by (insert positive_imp_inverse_positive [of "-a"], 
+    simp add: nonzero_inverse_minus_eq order_less_imp_not_eq)
+
+lemma inverse_le_imp_le:
+assumes invle: "inverse a \<le> inverse b" and apos:  "0 < a"
+shows "b \<le> (a::'a::linordered_field)"
+proof (rule classical)
+  assume "~ b \<le> a"
+  hence "a < b"  by (simp add: linorder_not_le)
+  hence bpos: "0 < b"  by (blast intro: apos order_less_trans)
+  hence "a * inverse a \<le> a * inverse b"
+    by (simp add: apos invle order_less_imp_le mult_left_mono)
+  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
+    by (simp add: bpos order_less_imp_le mult_right_mono)
+  thus "b \<le> a"  by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
+qed
+
+lemma inverse_positive_imp_positive:
+assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0"
+shows "0 < (a::'a::linordered_field)"
+proof -
+  have "0 < inverse (inverse a)"
+    using inv_gt_0 by (rule positive_imp_inverse_positive)
+  thus "0 < a"
+    using nz by (simp add: nonzero_inverse_inverse_eq)
+qed
+
+lemma inverse_positive_iff_positive [simp]:
+  "(0 < inverse a) = (0 < (a::'a::{linordered_field,division_by_zero}))"
+apply (cases "a = 0", simp)
+apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
+done
+
+lemma inverse_negative_imp_negative:
+assumes inv_less_0: "inverse a < 0" and nz:  "a \<noteq> 0"
+shows "a < (0::'a::linordered_field)"
+proof -
+  have "inverse (inverse a) < 0"
+    using inv_less_0 by (rule negative_imp_inverse_negative)
+  thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq)
+qed
+
+lemma inverse_negative_iff_negative [simp]:
+  "(inverse a < 0) = (a < (0::'a::{linordered_field,division_by_zero}))"
+apply (cases "a = 0", simp)
+apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
+done
+
+lemma inverse_nonnegative_iff_nonnegative [simp]:
+  "(0 \<le> inverse a) = (0 \<le> (a::'a::{linordered_field,division_by_zero}))"
+by (simp add: linorder_not_less [symmetric])
+
+lemma inverse_nonpositive_iff_nonpositive [simp]:
+  "(inverse a \<le> 0) = (a \<le> (0::'a::{linordered_field,division_by_zero}))"
+by (simp add: linorder_not_less [symmetric])
+
+lemma linordered_field_no_lb: "\<forall> x. \<exists>y. y < (x::'a::linordered_field)"
+proof
+  fix x::'a
+  have m1: "- (1::'a) < 0" by simp
+  from add_strict_right_mono[OF m1, where c=x] 
+  have "(- 1) + x < x" by simp
+  thus "\<exists>y. y < x" by blast
+qed
+
+lemma linordered_field_no_ub: "\<forall> x. \<exists>y. y > (x::'a::linordered_field)"
+proof
+  fix x::'a
+  have m1: " (1::'a) > 0" by simp
+  from add_strict_right_mono[OF m1, where c=x] 
+  have "1 + x > x" by simp
+  thus "\<exists>y. y > x" by blast
+qed
+
+subsection{*Anti-Monotonicity of @{term inverse}*}
+
+lemma less_imp_inverse_less:
+assumes less: "a < b" and apos:  "0 < a"
+shows "inverse b < inverse (a::'a::linordered_field)"
+proof (rule ccontr)
+  assume "~ inverse b < inverse a"
+  hence "inverse a \<le> inverse b" by (simp add: linorder_not_less)
+  hence "~ (a < b)"
+    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
+  thus False by (rule notE [OF _ less])
+qed
+
+lemma inverse_less_imp_less:
+  "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::linordered_field)"
+apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
+apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
+done
+
+text{*Both premises are essential. Consider -1 and 1.*}
+lemma inverse_less_iff_less [simp,noatp]:
+  "[|0 < a; 0 < b|] ==> (inverse a < inverse b) = (b < (a::'a::linordered_field))"
+by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
+
+lemma le_imp_inverse_le:
+  "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::linordered_field)"
+by (force simp add: order_le_less less_imp_inverse_less)
+
+lemma inverse_le_iff_le [simp,noatp]:
+ "[|0 < a; 0 < b|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::linordered_field))"
+by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
+
+
+text{*These results refer to both operands being negative.  The opposite-sign
+case is trivial, since inverse preserves signs.*}
+lemma inverse_le_imp_le_neg:
+  "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::linordered_field)"
+apply (rule classical) 
+apply (subgoal_tac "a < 0") 
+ prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
+apply (insert inverse_le_imp_le [of "-b" "-a"])
+apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
+done
+
+lemma less_imp_inverse_less_neg:
+   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::linordered_field)"
+apply (subgoal_tac "a < 0") 
+ prefer 2 apply (blast intro: order_less_trans) 
+apply (insert less_imp_inverse_less [of "-b" "-a"])
+apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
+done
+
+lemma inverse_less_imp_less_neg:
+   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::linordered_field)"
+apply (rule classical) 
+apply (subgoal_tac "a < 0") 
+ prefer 2
+ apply (force simp add: linorder_not_less intro: order_le_less_trans) 
+apply (insert inverse_less_imp_less [of "-b" "-a"])
+apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
+done
+
+lemma inverse_less_iff_less_neg [simp,noatp]:
+  "[|a < 0; b < 0|] ==> (inverse a < inverse b) = (b < (a::'a::linordered_field))"
+apply (insert inverse_less_iff_less [of "-b" "-a"])
+apply (simp del: inverse_less_iff_less 
+            add: order_less_imp_not_eq nonzero_inverse_minus_eq)
+done
+
+lemma le_imp_inverse_le_neg:
+  "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::linordered_field)"
+by (force simp add: order_le_less less_imp_inverse_less_neg)
+
+lemma inverse_le_iff_le_neg [simp,noatp]:
+ "[|a < 0; b < 0|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::linordered_field))"
+by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
+
+
+subsection{*Inverses and the Number One*}
+
+lemma one_less_inverse_iff:
+  "(1 < inverse x) = (0 < x & x < (1::'a::{linordered_field,division_by_zero}))"
+proof cases
+  assume "0 < x"
+    with inverse_less_iff_less [OF zero_less_one, of x]
+    show ?thesis by simp
+next
+  assume notless: "~ (0 < x)"
+  have "~ (1 < inverse x)"
+  proof
+    assume "1 < inverse x"
+    also with notless have "... \<le> 0" by (simp add: linorder_not_less)
+    also have "... < 1" by (rule zero_less_one) 
+    finally show False by auto
+  qed
+  with notless show ?thesis by simp
+qed
+
+lemma inverse_eq_1_iff [simp]:
+  "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
+by (insert inverse_eq_iff_eq [of x 1], simp) 
+
+lemma one_le_inverse_iff:
+  "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{linordered_field,division_by_zero}))"
+by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
+                    eq_commute [of 1]) 
+
+lemma inverse_less_1_iff:
+  "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{linordered_field,division_by_zero}))"
+by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
+
+lemma inverse_le_1_iff:
+  "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{linordered_field,division_by_zero}))"
+by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
+
+
+subsection{*Simplification of Inequalities Involving Literal Divisors*}
+
+lemma pos_le_divide_eq: "0 < (c::'a::linordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
+proof -
+  assume less: "0<c"
+  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
+    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
+  also have "... = (a*c \<le> b)"
+    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
+  finally show ?thesis .
+qed
+
+lemma neg_le_divide_eq: "c < (0::'a::linordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
+proof -
+  assume less: "c<0"
+  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
+    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
+  also have "... = (b \<le> a*c)"
+    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
+  finally show ?thesis .
+qed
+
+lemma le_divide_eq:
+  "(a \<le> b/c) = 
+   (if 0 < c then a*c \<le> b
+             else if c < 0 then b \<le> a*c
+             else  a \<le> (0::'a::{linordered_field,division_by_zero}))"
+apply (cases "c=0", simp) 
+apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
+done
+
+lemma pos_divide_le_eq: "0 < (c::'a::linordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
+proof -
+  assume less: "0<c"
+  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
+    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
+  also have "... = (b \<le> a*c)"
+    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
+  finally show ?thesis .
+qed
+
+lemma neg_divide_le_eq: "c < (0::'a::linordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
+proof -
+  assume less: "c<0"
+  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
+    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
+  also have "... = (a*c \<le> b)"
+    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
+  finally show ?thesis .
+qed
+
+lemma divide_le_eq:
+  "(b/c \<le> a) = 
+   (if 0 < c then b \<le> a*c
+             else if c < 0 then a*c \<le> b
+             else 0 \<le> (a::'a::{linordered_field,division_by_zero}))"
+apply (cases "c=0", simp) 
+apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
+done
+
+lemma pos_less_divide_eq:
+     "0 < (c::'a::linordered_field) ==> (a < b/c) = (a*c < b)"
+proof -
+  assume less: "0<c"
+  hence "(a < b/c) = (a*c < (b/c)*c)"
+    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
+  also have "... = (a*c < b)"
+    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
+  finally show ?thesis .
+qed
+
+lemma neg_less_divide_eq:
+ "c < (0::'a::linordered_field) ==> (a < b/c) = (b < a*c)"
+proof -
+  assume less: "c<0"
+  hence "(a < b/c) = ((b/c)*c < a*c)"
+    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
+  also have "... = (b < a*c)"
+    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
+  finally show ?thesis .
+qed
+
+lemma less_divide_eq:
+  "(a < b/c) = 
+   (if 0 < c then a*c < b
+             else if c < 0 then b < a*c
+             else  a < (0::'a::{linordered_field,division_by_zero}))"
+apply (cases "c=0", simp) 
+apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
+done
+
+lemma pos_divide_less_eq:
+     "0 < (c::'a::linordered_field) ==> (b/c < a) = (b < a*c)"
+proof -
+  assume less: "0<c"
+  hence "(b/c < a) = ((b/c)*c < a*c)"
+    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
+  also have "... = (b < a*c)"
+    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
+  finally show ?thesis .
+qed
+
+lemma neg_divide_less_eq:
+ "c < (0::'a::linordered_field) ==> (b/c < a) = (a*c < b)"
+proof -
+  assume less: "c<0"
+  hence "(b/c < a) = (a*c < (b/c)*c)"
+    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
+  also have "... = (a*c < b)"
+    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
+  finally show ?thesis .
+qed
+
+lemma divide_less_eq:
+  "(b/c < a) = 
+   (if 0 < c then b < a*c
+             else if c < 0 then a*c < b
+             else 0 < (a::'a::{linordered_field,division_by_zero}))"
+apply (cases "c=0", simp) 
+apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
+done
+
+
+subsection{*Field simplification*}
+
+text{* Lemmas @{text field_simps} multiply with denominators in in(equations)
+if they can be proved to be non-zero (for equations) or positive/negative
+(for inequations). Can be too aggressive and is therefore separate from the
+more benign @{text algebra_simps}. *}
+
+lemmas field_simps[noatp] = field_eq_simps
+  (* multiply ineqn *)
+  pos_divide_less_eq neg_divide_less_eq
+  pos_less_divide_eq neg_less_divide_eq
+  pos_divide_le_eq neg_divide_le_eq
+  pos_le_divide_eq neg_le_divide_eq
+
+text{* Lemmas @{text sign_simps} is a first attempt to automate proofs
+of positivity/negativity needed for @{text field_simps}. Have not added @{text
+sign_simps} to @{text field_simps} because the former can lead to case
+explosions. *}
+
+lemmas sign_simps[noatp] = group_simps
+  zero_less_mult_iff  mult_less_0_iff
+
+(* Only works once linear arithmetic is installed:
+text{*An example:*}
+lemma fixes a b c d e f :: "'a::linordered_field"
+shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow>
+ ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) <
+ ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u"
+apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0")
+ prefer 2 apply(simp add:sign_simps)
+apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0")
+ prefer 2 apply(simp add:sign_simps)
+apply(simp add:field_simps)
+done
+*)
+
+
+subsection{*Division and Signs*}
+
+lemma zero_less_divide_iff:
+     "((0::'a::{linordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
+by (simp add: divide_inverse zero_less_mult_iff)
+
+lemma divide_less_0_iff:
+     "(a/b < (0::'a::{linordered_field,division_by_zero})) = 
+      (0 < a & b < 0 | a < 0 & 0 < b)"
+by (simp add: divide_inverse mult_less_0_iff)
+
+lemma zero_le_divide_iff:
+     "((0::'a::{linordered_field,division_by_zero}) \<le> a/b) =
+      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
+by (simp add: divide_inverse zero_le_mult_iff)
+
+lemma divide_le_0_iff:
+     "(a/b \<le> (0::'a::{linordered_field,division_by_zero})) =
+      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
+by (simp add: divide_inverse mult_le_0_iff)
+
+lemma divide_eq_0_iff [simp,noatp]:
+     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
+by (simp add: divide_inverse)
+
+lemma divide_pos_pos:
+  "0 < (x::'a::linordered_field) ==> 0 < y ==> 0 < x / y"
+by(simp add:field_simps)
+
+
+lemma divide_nonneg_pos:
+  "0 <= (x::'a::linordered_field) ==> 0 < y ==> 0 <= x / y"
+by(simp add:field_simps)
+
+lemma divide_neg_pos:
+  "(x::'a::linordered_field) < 0 ==> 0 < y ==> x / y < 0"
+by(simp add:field_simps)
+
+lemma divide_nonpos_pos:
+  "(x::'a::linordered_field) <= 0 ==> 0 < y ==> x / y <= 0"
+by(simp add:field_simps)
+
+lemma divide_pos_neg:
+  "0 < (x::'a::linordered_field) ==> y < 0 ==> x / y < 0"
+by(simp add:field_simps)
+
+lemma divide_nonneg_neg:
+  "0 <= (x::'a::linordered_field) ==> y < 0 ==> x / y <= 0" 
+by(simp add:field_simps)
+
+lemma divide_neg_neg:
+  "(x::'a::linordered_field) < 0 ==> y < 0 ==> 0 < x / y"
+by(simp add:field_simps)
+
+lemma divide_nonpos_neg:
+  "(x::'a::linordered_field) <= 0 ==> y < 0 ==> 0 <= x / y"
+by(simp add:field_simps)
+
+
+subsection{*Cancellation Laws for Division*}
+
+lemma divide_cancel_right [simp,noatp]:
+     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
+apply (cases "c=0", simp)
+apply (simp add: divide_inverse)
+done
+
+lemma divide_cancel_left [simp,noatp]:
+     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
+apply (cases "c=0", simp)
+apply (simp add: divide_inverse)
+done
+
+
+subsection {* Division and the Number One *}
+
+text{*Simplify expressions equated with 1*}
+lemma divide_eq_1_iff [simp,noatp]:
+     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
+apply (cases "b=0", simp)
+apply (simp add: right_inverse_eq)
+done
+
+lemma one_eq_divide_iff [simp,noatp]:
+     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
+by (simp add: eq_commute [of 1])
+
+lemma zero_eq_1_divide_iff [simp,noatp]:
+     "((0::'a::{linordered_field,division_by_zero}) = 1/a) = (a = 0)"
+apply (cases "a=0", simp)
+apply (auto simp add: nonzero_eq_divide_eq)
+done
+
+lemma one_divide_eq_0_iff [simp,noatp]:
+     "(1/a = (0::'a::{linordered_field,division_by_zero})) = (a = 0)"
+apply (cases "a=0", simp)
+apply (insert zero_neq_one [THEN not_sym])
+apply (auto simp add: nonzero_divide_eq_eq)
+done
+
+text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
+lemmas zero_less_divide_1_iff = zero_less_divide_iff [of 1, simplified]
+lemmas divide_less_0_1_iff = divide_less_0_iff [of 1, simplified]
+lemmas zero_le_divide_1_iff = zero_le_divide_iff [of 1, simplified]
+lemmas divide_le_0_1_iff = divide_le_0_iff [of 1, simplified]
+
+declare zero_less_divide_1_iff [simp,noatp]
+declare divide_less_0_1_iff [simp,noatp]
+declare zero_le_divide_1_iff [simp,noatp]
+declare divide_le_0_1_iff [simp,noatp]
+
+
+subsection {* Ordering Rules for Division *}
+
+lemma divide_strict_right_mono:
+     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::linordered_field)"
+by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
+              positive_imp_inverse_positive)
+
+lemma divide_right_mono:
+     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{linordered_field,division_by_zero})"
+by (force simp add: divide_strict_right_mono order_le_less)
+
+lemma divide_right_mono_neg: "(a::'a::{division_by_zero,linordered_field}) <= b 
+    ==> c <= 0 ==> b / c <= a / c"
+apply (drule divide_right_mono [of _ _ "- c"])
+apply auto
+done
+
+lemma divide_strict_right_mono_neg:
+     "[|b < a; c < 0|] ==> a / c < b / (c::'a::linordered_field)"
+apply (drule divide_strict_right_mono [of _ _ "-c"], simp)
+apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric])
+done
+
+text{*The last premise ensures that @{term a} and @{term b} 
+      have the same sign*}
+lemma divide_strict_left_mono:
+  "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::linordered_field)"
+by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono)
+
+lemma divide_left_mono:
+  "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::linordered_field)"
+by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_right_mono)
+
+lemma divide_left_mono_neg: "(a::'a::{division_by_zero,linordered_field}) <= b 
+    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
+  apply (drule divide_left_mono [of _ _ "- c"])
+  apply (auto simp add: mult_commute)
+done
+
+lemma divide_strict_left_mono_neg:
+  "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::linordered_field)"
+by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono_neg)
+
+
+text{*Simplify quotients that are compared with the value 1.*}
+
+lemma le_divide_eq_1 [noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
+by (auto simp add: le_divide_eq)
+
+lemma divide_le_eq_1 [noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
+by (auto simp add: divide_le_eq)
+
+lemma less_divide_eq_1 [noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
+by (auto simp add: less_divide_eq)
+
+lemma divide_less_eq_1 [noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
+by (auto simp add: divide_less_eq)
+
+
+subsection{*Conditional Simplification Rules: No Case Splits*}
+
+lemma le_divide_eq_1_pos [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
+by (auto simp add: le_divide_eq)
+
+lemma le_divide_eq_1_neg [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
+by (auto simp add: le_divide_eq)
+
+lemma divide_le_eq_1_pos [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
+by (auto simp add: divide_le_eq)
+
+lemma divide_le_eq_1_neg [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
+by (auto simp add: divide_le_eq)
+
+lemma less_divide_eq_1_pos [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
+by (auto simp add: less_divide_eq)
+
+lemma less_divide_eq_1_neg [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
+by (auto simp add: less_divide_eq)
+
+lemma divide_less_eq_1_pos [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
+by (auto simp add: divide_less_eq)
+
+lemma divide_less_eq_1_neg [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "a < 0 \<Longrightarrow> b/a < 1 <-> a < b"
+by (auto simp add: divide_less_eq)
+
+lemma eq_divide_eq_1 [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "(1 = b/a) = ((a \<noteq> 0 & a = b))"
+by (auto simp add: eq_divide_eq)
+
+lemma divide_eq_eq_1 [simp,noatp]:
+  fixes a :: "'a :: {linordered_field,division_by_zero}"
+  shows "(b/a = 1) = ((a \<noteq> 0 & a = b))"
+by (auto simp add: divide_eq_eq)
+
+
+subsection {* Reasoning about inequalities with division *}
+
+lemma mult_imp_div_pos_le: "0 < (y::'a::linordered_field) ==> x <= z * y ==>
+    x / y <= z"
+by (subst pos_divide_le_eq, assumption+)
+
+lemma mult_imp_le_div_pos: "0 < (y::'a::linordered_field) ==> z * y <= x ==>
+    z <= x / y"
+by(simp add:field_simps)
+
+lemma mult_imp_div_pos_less: "0 < (y::'a::linordered_field) ==> x < z * y ==>
+    x / y < z"
+by(simp add:field_simps)
+
+lemma mult_imp_less_div_pos: "0 < (y::'a::linordered_field) ==> z * y < x ==>
+    z < x / y"
+by(simp add:field_simps)
+
+lemma frac_le: "(0::'a::linordered_field) <= x ==> 
+    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
+  apply (rule mult_imp_div_pos_le)
+  apply simp
+  apply (subst times_divide_eq_left)
+  apply (rule mult_imp_le_div_pos, assumption)
+  apply (rule mult_mono)
+  apply simp_all
+done
+
+lemma frac_less: "(0::'a::linordered_field) <= x ==> 
+    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
+  apply (rule mult_imp_div_pos_less)
+  apply simp
+  apply (subst times_divide_eq_left)
+  apply (rule mult_imp_less_div_pos, assumption)
+  apply (erule mult_less_le_imp_less)
+  apply simp_all
+done
+
+lemma frac_less2: "(0::'a::linordered_field) < x ==> 
+    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
+  apply (rule mult_imp_div_pos_less)
+  apply simp_all
+  apply (subst times_divide_eq_left)
+  apply (rule mult_imp_less_div_pos, assumption)
+  apply (erule mult_le_less_imp_less)
+  apply simp_all
+done
+
+text{*It's not obvious whether these should be simprules or not. 
+  Their effect is to gather terms into one big fraction, like
+  a*b*c / x*y*z. The rationale for that is unclear, but many proofs 
+  seem to need them.*}
+
+declare times_divide_eq [simp]
+
+
+subsection {* Ordered Fields are Dense *}
+
+lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::linordered_field)"
+by (simp add: field_simps zero_less_two)
+
+lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::linordered_field) < b"
+by (simp add: field_simps zero_less_two)
+
+instance linordered_field < dense_linorder
+proof
+  fix x y :: 'a
+  have "x < x + 1" by simp
+  then show "\<exists>y. x < y" .. 
+  have "x - 1 < x" by simp
+  then show "\<exists>y. y < x" ..
+  show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
+qed
+
+
+subsection {* Absolute Value *}
+
+lemma nonzero_abs_inverse:
+     "a \<noteq> 0 ==> abs (inverse (a::'a::linordered_field)) = inverse (abs a)"
+apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
+                      negative_imp_inverse_negative)
+apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
+done
+
+lemma abs_inverse [simp]:
+     "abs (inverse (a::'a::{linordered_field,division_by_zero})) = 
+      inverse (abs a)"
+apply (cases "a=0", simp) 
+apply (simp add: nonzero_abs_inverse) 
+done
+
+lemma nonzero_abs_divide:
+     "b \<noteq> 0 ==> abs (a / (b::'a::linordered_field)) = abs a / abs b"
+by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
+
+lemma abs_divide [simp]:
+     "abs (a / (b::'a::{linordered_field,division_by_zero})) = abs a / abs b"
+apply (cases "b=0", simp) 
+apply (simp add: nonzero_abs_divide) 
+done
+
+lemma abs_div_pos: "(0::'a::{division_by_zero,linordered_field}) < y ==> 
+    abs x / y = abs (x / y)"
+  apply (subst abs_divide)
+  apply (simp add: order_less_imp_le)
+done
+
+code_modulename SML
+  Fields Arith
+
+code_modulename OCaml
+  Fields Arith
+
+code_modulename Haskell
+  Fields Arith
+
+end