src/HOL/Rings.thy
changeset 35050 9f841f20dca6
parent 35043 07dbdf60d5ad
child 35083 3246e66b0874
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Rings.thy	Mon Feb 08 17:12:38 2010 +0100
@@ -0,0 +1,1212 @@
+(*  Title:      HOL/Rings.thy
+    Author:     Gertrud Bauer
+    Author:     Steven Obua
+    Author:     Tobias Nipkow
+    Author:     Lawrence C Paulson
+    Author:     Markus Wenzel
+    Author:     Jeremy Avigad
+*)
+
+header {* Rings *}
+
+theory Rings
+imports Groups
+begin
+
+text {*
+  The theory of partially ordered rings is taken from the books:
+  \begin{itemize}
+  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
+  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
+  \end{itemize}
+  Most of the used notions can also be looked up in 
+  \begin{itemize}
+  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
+  \item \emph{Algebra I} by van der Waerden, Springer.
+  \end{itemize}
+*}
+
+class semiring = ab_semigroup_add + semigroup_mult +
+  assumes left_distrib[algebra_simps]: "(a + b) * c = a * c + b * c"
+  assumes right_distrib[algebra_simps]: "a * (b + c) = a * b + a * c"
+begin
+
+text{*For the @{text combine_numerals} simproc*}
+lemma combine_common_factor:
+  "a * e + (b * e + c) = (a + b) * e + c"
+by (simp add: left_distrib add_ac)
+
+end
+
+class mult_zero = times + zero +
+  assumes mult_zero_left [simp]: "0 * a = 0"
+  assumes mult_zero_right [simp]: "a * 0 = 0"
+
+class semiring_0 = semiring + comm_monoid_add + mult_zero
+
+class semiring_0_cancel = semiring + cancel_comm_monoid_add
+begin
+
+subclass semiring_0
+proof
+  fix a :: 'a
+  have "0 * a + 0 * a = 0 * a + 0" by (simp add: left_distrib [symmetric])
+  thus "0 * a = 0" by (simp only: add_left_cancel)
+next
+  fix a :: 'a
+  have "a * 0 + a * 0 = a * 0 + 0" by (simp add: right_distrib [symmetric])
+  thus "a * 0 = 0" by (simp only: add_left_cancel)
+qed
+
+end
+
+class comm_semiring = ab_semigroup_add + ab_semigroup_mult +
+  assumes distrib: "(a + b) * c = a * c + b * c"
+begin
+
+subclass semiring
+proof
+  fix a b c :: 'a
+  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
+  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
+  also have "... = b * a + c * a" by (simp only: distrib)
+  also have "... = a * b + a * c" by (simp add: mult_ac)
+  finally show "a * (b + c) = a * b + a * c" by blast
+qed
+
+end
+
+class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero
+begin
+
+subclass semiring_0 ..
+
+end
+
+class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add
+begin
+
+subclass semiring_0_cancel ..
+
+subclass comm_semiring_0 ..
+
+end
+
+class zero_neq_one = zero + one +
+  assumes zero_neq_one [simp]: "0 \<noteq> 1"
+begin
+
+lemma one_neq_zero [simp]: "1 \<noteq> 0"
+by (rule not_sym) (rule zero_neq_one)
+
+end
+
+class semiring_1 = zero_neq_one + semiring_0 + monoid_mult
+
+text {* Abstract divisibility *}
+
+class dvd = times
+begin
+
+definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) where
+  [code del]: "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)"
+
+lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a"
+  unfolding dvd_def ..
+
+lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P"
+  unfolding dvd_def by blast 
+
+end
+
+class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd
+  (*previously almost_semiring*)
+begin
+
+subclass semiring_1 ..
+
+lemma dvd_refl[simp]: "a dvd a"
+proof
+  show "a = a * 1" by simp
+qed
+
+lemma dvd_trans:
+  assumes "a dvd b" and "b dvd c"
+  shows "a dvd c"
+proof -
+  from assms obtain v where "b = a * v" by (auto elim!: dvdE)
+  moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE)
+  ultimately have "c = a * (v * w)" by (simp add: mult_assoc)
+  then show ?thesis ..
+qed
+
+lemma dvd_0_left_iff [noatp, simp]: "0 dvd a \<longleftrightarrow> a = 0"
+by (auto intro: dvd_refl elim!: dvdE)
+
+lemma dvd_0_right [iff]: "a dvd 0"
+proof
+  show "0 = a * 0" by simp
+qed
+
+lemma one_dvd [simp]: "1 dvd a"
+by (auto intro!: dvdI)
+
+lemma dvd_mult[simp]: "a dvd c \<Longrightarrow> a dvd (b * c)"
+by (auto intro!: mult_left_commute dvdI elim!: dvdE)
+
+lemma dvd_mult2[simp]: "a dvd b \<Longrightarrow> a dvd (b * c)"
+  apply (subst mult_commute)
+  apply (erule dvd_mult)
+  done
+
+lemma dvd_triv_right [simp]: "a dvd b * a"
+by (rule dvd_mult) (rule dvd_refl)
+
+lemma dvd_triv_left [simp]: "a dvd a * b"
+by (rule dvd_mult2) (rule dvd_refl)
+
+lemma mult_dvd_mono:
+  assumes "a dvd b"
+    and "c dvd d"
+  shows "a * c dvd b * d"
+proof -
+  from `a dvd b` obtain b' where "b = a * b'" ..
+  moreover from `c dvd d` obtain d' where "d = c * d'" ..
+  ultimately have "b * d = (a * c) * (b' * d')" by (simp add: mult_ac)
+  then show ?thesis ..
+qed
+
+lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c"
+by (simp add: dvd_def mult_assoc, blast)
+
+lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c"
+  unfolding mult_ac [of a] by (rule dvd_mult_left)
+
+lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0"
+by simp
+
+lemma dvd_add[simp]:
+  assumes "a dvd b" and "a dvd c" shows "a dvd (b + c)"
+proof -
+  from `a dvd b` obtain b' where "b = a * b'" ..
+  moreover from `a dvd c` obtain c' where "c = a * c'" ..
+  ultimately have "b + c = a * (b' + c')" by (simp add: right_distrib)
+  then show ?thesis ..
+qed
+
+end
+
+
+class no_zero_divisors = zero + times +
+  assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
+
+class semiring_1_cancel = semiring + cancel_comm_monoid_add
+  + zero_neq_one + monoid_mult
+begin
+
+subclass semiring_0_cancel ..
+
+subclass semiring_1 ..
+
+end
+
+class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add
+  + zero_neq_one + comm_monoid_mult
+begin
+
+subclass semiring_1_cancel ..
+subclass comm_semiring_0_cancel ..
+subclass comm_semiring_1 ..
+
+end
+
+class ring = semiring + ab_group_add
+begin
+
+subclass semiring_0_cancel ..
+
+text {* Distribution rules *}
+
+lemma minus_mult_left: "- (a * b) = - a * b"
+by (rule minus_unique) (simp add: left_distrib [symmetric]) 
+
+lemma minus_mult_right: "- (a * b) = a * - b"
+by (rule minus_unique) (simp add: right_distrib [symmetric]) 
+
+text{*Extract signs from products*}
+lemmas mult_minus_left [simp, noatp] = minus_mult_left [symmetric]
+lemmas mult_minus_right [simp,noatp] = minus_mult_right [symmetric]
+
+lemma minus_mult_minus [simp]: "- a * - b = a * b"
+by simp
+
+lemma minus_mult_commute: "- a * b = a * - b"
+by simp
+
+lemma right_diff_distrib[algebra_simps]: "a * (b - c) = a * b - a * c"
+by (simp add: right_distrib diff_minus)
+
+lemma left_diff_distrib[algebra_simps]: "(a - b) * c = a * c - b * c"
+by (simp add: left_distrib diff_minus)
+
+lemmas ring_distribs[noatp] =
+  right_distrib left_distrib left_diff_distrib right_diff_distrib
+
+text{*Legacy - use @{text algebra_simps} *}
+lemmas ring_simps[noatp] = algebra_simps
+
+lemma eq_add_iff1:
+  "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d"
+by (simp add: algebra_simps)
+
+lemma eq_add_iff2:
+  "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d"
+by (simp add: algebra_simps)
+
+end
+
+lemmas ring_distribs[noatp] =
+  right_distrib left_distrib left_diff_distrib right_diff_distrib
+
+class comm_ring = comm_semiring + ab_group_add
+begin
+
+subclass ring ..
+subclass comm_semiring_0_cancel ..
+
+end
+
+class ring_1 = ring + zero_neq_one + monoid_mult
+begin
+
+subclass semiring_1_cancel ..
+
+end
+
+class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult
+  (*previously ring*)
+begin
+
+subclass ring_1 ..
+subclass comm_semiring_1_cancel ..
+
+lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y"
+proof
+  assume "x dvd - y"
+  then have "x dvd - 1 * - y" by (rule dvd_mult)
+  then show "x dvd y" by simp
+next
+  assume "x dvd y"
+  then have "x dvd - 1 * y" by (rule dvd_mult)
+  then show "x dvd - y" by simp
+qed
+
+lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y"
+proof
+  assume "- x dvd y"
+  then obtain k where "y = - x * k" ..
+  then have "y = x * - k" by simp
+  then show "x dvd y" ..
+next
+  assume "x dvd y"
+  then obtain k where "y = x * k" ..
+  then have "y = - x * - k" by simp
+  then show "- x dvd y" ..
+qed
+
+lemma dvd_diff[simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)"
+by (simp add: diff_minus dvd_minus_iff)
+
+end
+
+class ring_no_zero_divisors = ring + no_zero_divisors
+begin
+
+lemma mult_eq_0_iff [simp]:
+  shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)"
+proof (cases "a = 0 \<or> b = 0")
+  case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
+    then show ?thesis using no_zero_divisors by simp
+next
+  case True then show ?thesis by auto
+qed
+
+text{*Cancellation of equalities with a common factor*}
+lemma mult_cancel_right [simp, noatp]:
+  "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b"
+proof -
+  have "(a * c = b * c) = ((a - b) * c = 0)"
+    by (simp add: algebra_simps right_minus_eq)
+  thus ?thesis by (simp add: disj_commute right_minus_eq)
+qed
+
+lemma mult_cancel_left [simp, noatp]:
+  "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b"
+proof -
+  have "(c * a = c * b) = (c * (a - b) = 0)"
+    by (simp add: algebra_simps right_minus_eq)
+  thus ?thesis by (simp add: right_minus_eq)
+qed
+
+end
+
+class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors
+begin
+
+lemma mult_cancel_right1 [simp]:
+  "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1"
+by (insert mult_cancel_right [of 1 c b], force)
+
+lemma mult_cancel_right2 [simp]:
+  "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1"
+by (insert mult_cancel_right [of a c 1], simp)
+ 
+lemma mult_cancel_left1 [simp]:
+  "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1"
+by (insert mult_cancel_left [of c 1 b], force)
+
+lemma mult_cancel_left2 [simp]:
+  "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1"
+by (insert mult_cancel_left [of c a 1], simp)
+
+end
+
+class idom = comm_ring_1 + no_zero_divisors
+begin
+
+subclass ring_1_no_zero_divisors ..
+
+lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> (a = b \<or> a = - b)"
+proof
+  assume "a * a = b * b"
+  then have "(a - b) * (a + b) = 0"
+    by (simp add: algebra_simps)
+  then show "a = b \<or> a = - b"
+    by (simp add: right_minus_eq eq_neg_iff_add_eq_0)
+next
+  assume "a = b \<or> a = - b"
+  then show "a * a = b * b" by auto
+qed
+
+lemma dvd_mult_cancel_right [simp]:
+  "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b"
+proof -
+  have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)"
+    unfolding dvd_def by (simp add: mult_ac)
+  also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b"
+    unfolding dvd_def by simp
+  finally show ?thesis .
+qed
+
+lemma dvd_mult_cancel_left [simp]:
+  "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b"
+proof -
+  have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)"
+    unfolding dvd_def by (simp add: mult_ac)
+  also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b"
+    unfolding dvd_def by simp
+  finally show ?thesis .
+qed
+
+end
+
+class division_ring = ring_1 + inverse +
+  assumes left_inverse [simp]:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
+  assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1"
+begin
+
+subclass ring_1_no_zero_divisors
+proof
+  fix a b :: 'a
+  assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
+  show "a * b \<noteq> 0"
+  proof
+    assume ab: "a * b = 0"
+    hence "0 = inverse a * (a * b) * inverse b" by simp
+    also have "\<dots> = (inverse a * a) * (b * inverse b)"
+      by (simp only: mult_assoc)
+    also have "\<dots> = 1" using a b by simp
+    finally show False by simp
+  qed
+qed
+
+lemma nonzero_imp_inverse_nonzero:
+  "a \<noteq> 0 \<Longrightarrow> inverse a \<noteq> 0"
+proof
+  assume ianz: "inverse a = 0"
+  assume "a \<noteq> 0"
+  hence "1 = a * inverse a" by simp
+  also have "... = 0" by (simp add: ianz)
+  finally have "1 = 0" .
+  thus False by (simp add: eq_commute)
+qed
+
+lemma inverse_zero_imp_zero:
+  "inverse a = 0 \<Longrightarrow> a = 0"
+apply (rule classical)
+apply (drule nonzero_imp_inverse_nonzero)
+apply auto
+done
+
+lemma inverse_unique: 
+  assumes ab: "a * b = 1"
+  shows "inverse a = b"
+proof -
+  have "a \<noteq> 0" using ab by (cases "a = 0") simp_all
+  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab)
+  ultimately show ?thesis by (simp add: mult_assoc [symmetric])
+qed
+
+lemma nonzero_inverse_minus_eq:
+  "a \<noteq> 0 \<Longrightarrow> inverse (- a) = - inverse a"
+by (rule inverse_unique) simp
+
+lemma nonzero_inverse_inverse_eq:
+  "a \<noteq> 0 \<Longrightarrow> inverse (inverse a) = a"
+by (rule inverse_unique) simp
+
+lemma nonzero_inverse_eq_imp_eq:
+  assumes "inverse a = inverse b" and "a \<noteq> 0" and "b \<noteq> 0"
+  shows "a = b"
+proof -
+  from `inverse a = inverse b`
+  have "inverse (inverse a) = inverse (inverse b)" by (rule arg_cong)
+  with `a \<noteq> 0` and `b \<noteq> 0` show "a = b"
+    by (simp add: nonzero_inverse_inverse_eq)
+qed
+
+lemma inverse_1 [simp]: "inverse 1 = 1"
+by (rule inverse_unique) simp
+
+lemma nonzero_inverse_mult_distrib: 
+  assumes "a \<noteq> 0" and "b \<noteq> 0"
+  shows "inverse (a * b) = inverse b * inverse a"
+proof -
+  have "a * (b * inverse b) * inverse a = 1" using assms by simp
+  hence "a * b * (inverse b * inverse a) = 1" by (simp only: mult_assoc)
+  thus ?thesis by (rule inverse_unique)
+qed
+
+lemma division_ring_inverse_add:
+  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = inverse a * (a + b) * inverse b"
+by (simp add: algebra_simps)
+
+lemma division_ring_inverse_diff:
+  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a - inverse b = inverse a * (b - a) * inverse b"
+by (simp add: algebra_simps)
+
+end
+
+class mult_mono = times + zero + ord +
+  assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
+  assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c"
+
+class ordered_semiring = mult_mono + semiring_0 + ordered_ab_semigroup_add 
+begin
+
+lemma mult_mono:
+  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c
+     \<Longrightarrow> a * c \<le> b * d"
+apply (erule mult_right_mono [THEN order_trans], assumption)
+apply (erule mult_left_mono, assumption)
+done
+
+lemma mult_mono':
+  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c
+     \<Longrightarrow> a * c \<le> b * d"
+apply (rule mult_mono)
+apply (fast intro: order_trans)+
+done
+
+end
+
+class ordered_cancel_semiring = mult_mono + ordered_ab_semigroup_add
+  + semiring + cancel_comm_monoid_add
+begin
+
+subclass semiring_0_cancel ..
+subclass ordered_semiring ..
+
+lemma mult_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b"
+using mult_left_mono [of zero b a] by simp
+
+lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0"
+using mult_left_mono [of b zero a] by simp
+
+lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0"
+using mult_right_mono [of a zero b] by simp
+
+text {* Legacy - use @{text mult_nonpos_nonneg} *}
+lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" 
+by (drule mult_right_mono [of b zero], auto)
+
+lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" 
+by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
+
+end
+
+class linordered_semiring = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + mult_mono
+begin
+
+subclass ordered_cancel_semiring ..
+
+subclass ordered_comm_monoid_add ..
+
+lemma mult_left_less_imp_less:
+  "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
+by (force simp add: mult_left_mono not_le [symmetric])
+ 
+lemma mult_right_less_imp_less:
+  "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
+by (force simp add: mult_right_mono not_le [symmetric])
+
+end
+
+class linordered_semiring_1 = linordered_semiring + semiring_1
+
+class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add +
+  assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
+  assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
+begin
+
+subclass semiring_0_cancel ..
+
+subclass linordered_semiring
+proof
+  fix a b c :: 'a
+  assume A: "a \<le> b" "0 \<le> c"
+  from A show "c * a \<le> c * b"
+    unfolding le_less
+    using mult_strict_left_mono by (cases "c = 0") auto
+  from A show "a * c \<le> b * c"
+    unfolding le_less
+    using mult_strict_right_mono by (cases "c = 0") auto
+qed
+
+lemma mult_left_le_imp_le:
+  "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
+by (force simp add: mult_strict_left_mono _not_less [symmetric])
+ 
+lemma mult_right_le_imp_le:
+  "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
+by (force simp add: mult_strict_right_mono not_less [symmetric])
+
+lemma mult_pos_pos: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b"
+using mult_strict_left_mono [of zero b a] by simp
+
+lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0"
+using mult_strict_left_mono [of b zero a] by simp
+
+lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0"
+using mult_strict_right_mono [of a zero b] by simp
+
+text {* Legacy - use @{text mult_neg_pos} *}
+lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" 
+by (drule mult_strict_right_mono [of b zero], auto)
+
+lemma zero_less_mult_pos:
+  "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
+apply (cases "b\<le>0")
+ apply (auto simp add: le_less not_less)
+apply (drule_tac mult_pos_neg [of a b])
+ apply (auto dest: less_not_sym)
+done
+
+lemma zero_less_mult_pos2:
+  "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
+apply (cases "b\<le>0")
+ apply (auto simp add: le_less not_less)
+apply (drule_tac mult_pos_neg2 [of a b])
+ apply (auto dest: less_not_sym)
+done
+
+text{*Strict monotonicity in both arguments*}
+lemma mult_strict_mono:
+  assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c"
+  shows "a * c < b * d"
+  using assms apply (cases "c=0")
+  apply (simp add: mult_pos_pos)
+  apply (erule mult_strict_right_mono [THEN less_trans])
+  apply (force simp add: le_less)
+  apply (erule mult_strict_left_mono, assumption)
+  done
+
+text{*This weaker variant has more natural premises*}
+lemma mult_strict_mono':
+  assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c"
+  shows "a * c < b * d"
+by (rule mult_strict_mono) (insert assms, auto)
+
+lemma mult_less_le_imp_less:
+  assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c"
+  shows "a * c < b * d"
+  using assms apply (subgoal_tac "a * c < b * c")
+  apply (erule less_le_trans)
+  apply (erule mult_left_mono)
+  apply simp
+  apply (erule mult_strict_right_mono)
+  apply assumption
+  done
+
+lemma mult_le_less_imp_less:
+  assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c"
+  shows "a * c < b * d"
+  using assms apply (subgoal_tac "a * c \<le> b * c")
+  apply (erule le_less_trans)
+  apply (erule mult_strict_left_mono)
+  apply simp
+  apply (erule mult_right_mono)
+  apply simp
+  done
+
+lemma mult_less_imp_less_left:
+  assumes less: "c * a < c * b" and nonneg: "0 \<le> c"
+  shows "a < b"
+proof (rule ccontr)
+  assume "\<not>  a < b"
+  hence "b \<le> a" by (simp add: linorder_not_less)
+  hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono)
+  with this and less show False by (simp add: not_less [symmetric])
+qed
+
+lemma mult_less_imp_less_right:
+  assumes less: "a * c < b * c" and nonneg: "0 \<le> c"
+  shows "a < b"
+proof (rule ccontr)
+  assume "\<not> a < b"
+  hence "b \<le> a" by (simp add: linorder_not_less)
+  hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono)
+  with this and less show False by (simp add: not_less [symmetric])
+qed  
+
+end
+
+class linlinordered_semiring_1_strict = linordered_semiring_strict + semiring_1
+
+class mult_mono1 = times + zero + ord +
+  assumes mult_mono1: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
+
+class ordered_comm_semiring = comm_semiring_0
+  + ordered_ab_semigroup_add + mult_mono1
+begin
+
+subclass ordered_semiring
+proof
+  fix a b c :: 'a
+  assume "a \<le> b" "0 \<le> c"
+  thus "c * a \<le> c * b" by (rule mult_mono1)
+  thus "a * c \<le> b * c" by (simp only: mult_commute)
+qed
+
+end
+
+class ordered_cancel_comm_semiring = comm_semiring_0_cancel
+  + ordered_ab_semigroup_add + mult_mono1
+begin
+
+subclass ordered_comm_semiring ..
+subclass ordered_cancel_semiring ..
+
+end
+
+class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add +
+  assumes mult_strict_left_mono_comm: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
+begin
+
+subclass linordered_semiring_strict
+proof
+  fix a b c :: 'a
+  assume "a < b" "0 < c"
+  thus "c * a < c * b" by (rule mult_strict_left_mono_comm)
+  thus "a * c < b * c" by (simp only: mult_commute)
+qed
+
+subclass ordered_cancel_comm_semiring
+proof
+  fix a b c :: 'a
+  assume "a \<le> b" "0 \<le> c"
+  thus "c * a \<le> c * b"
+    unfolding le_less
+    using mult_strict_left_mono by (cases "c = 0") auto
+qed
+
+end
+
+class ordered_ring = ring + ordered_cancel_semiring 
+begin
+
+subclass ordered_ab_group_add ..
+
+text{*Legacy - use @{text algebra_simps} *}
+lemmas ring_simps[noatp] = algebra_simps
+
+lemma less_add_iff1:
+  "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d"
+by (simp add: algebra_simps)
+
+lemma less_add_iff2:
+  "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d"
+by (simp add: algebra_simps)
+
+lemma le_add_iff1:
+  "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d"
+by (simp add: algebra_simps)
+
+lemma le_add_iff2:
+  "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d"
+by (simp add: algebra_simps)
+
+lemma mult_left_mono_neg:
+  "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b"
+  apply (drule mult_left_mono [of _ _ "uminus c"])
+  apply (simp_all add: minus_mult_left [symmetric]) 
+  done
+
+lemma mult_right_mono_neg:
+  "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c"
+  apply (drule mult_right_mono [of _ _ "uminus c"])
+  apply (simp_all add: minus_mult_right [symmetric]) 
+  done
+
+lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b"
+using mult_right_mono_neg [of a zero b] by simp
+
+lemma split_mult_pos_le:
+  "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b"
+by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos)
+
+end
+
+class abs_if = minus + uminus + ord + zero + abs +
+  assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)"
+
+class sgn_if = minus + uminus + zero + one + ord + sgn +
+  assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
+
+lemma (in sgn_if) sgn0[simp]: "sgn 0 = 0"
+by(simp add:sgn_if)
+
+class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if
+begin
+
+subclass ordered_ring ..
+
+subclass ordered_ab_group_add_abs
+proof
+  fix a b
+  show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
+    by (auto simp add: abs_if not_less neg_less_eq_nonneg less_eq_neg_nonpos)
+    (auto simp del: minus_add_distrib simp add: minus_add_distrib [symmetric]
+     neg_less_eq_nonneg less_eq_neg_nonpos, auto intro: add_nonneg_nonneg,
+      auto intro!: less_imp_le add_neg_neg)
+qed (auto simp add: abs_if less_eq_neg_nonpos neg_equal_zero)
+
+end
+
+(* The "strict" suffix can be seen as describing the combination of linordered_ring and no_zero_divisors.
+   Basically, linordered_ring + no_zero_divisors = linordered_ring_strict.
+ *)
+class linordered_ring_strict = ring + linordered_semiring_strict
+  + ordered_ab_group_add + abs_if
+begin
+
+subclass linordered_ring ..
+
+lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b"
+using mult_strict_left_mono [of b a "- c"] by simp
+
+lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c"
+using mult_strict_right_mono [of b a "- c"] by simp
+
+lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b"
+using mult_strict_right_mono_neg [of a zero b] by simp
+
+subclass ring_no_zero_divisors
+proof
+  fix a b
+  assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff)
+  assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff)
+  have "a * b < 0 \<or> 0 < a * b"
+  proof (cases "a < 0")
+    case True note A' = this
+    show ?thesis proof (cases "b < 0")
+      case True with A'
+      show ?thesis by (auto dest: mult_neg_neg)
+    next
+      case False with B have "0 < b" by auto
+      with A' show ?thesis by (auto dest: mult_strict_right_mono)
+    qed
+  next
+    case False with A have A': "0 < a" by auto
+    show ?thesis proof (cases "b < 0")
+      case True with A'
+      show ?thesis by (auto dest: mult_strict_right_mono_neg)
+    next
+      case False with B have "0 < b" by auto
+      with A' show ?thesis by (auto dest: mult_pos_pos)
+    qed
+  qed
+  then show "a * b \<noteq> 0" by (simp add: neq_iff)
+qed
+
+lemma zero_less_mult_iff:
+  "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0"
+  apply (auto simp add: mult_pos_pos mult_neg_neg)
+  apply (simp_all add: not_less le_less)
+  apply (erule disjE) apply assumption defer
+  apply (erule disjE) defer apply (drule sym) apply simp
+  apply (erule disjE) defer apply (drule sym) apply simp
+  apply (erule disjE) apply assumption apply (drule sym) apply simp
+  apply (drule sym) apply simp
+  apply (blast dest: zero_less_mult_pos)
+  apply (blast dest: zero_less_mult_pos2)
+  done
+
+lemma zero_le_mult_iff:
+  "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0"
+by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff)
+
+lemma mult_less_0_iff:
+  "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b"
+  apply (insert zero_less_mult_iff [of "-a" b]) 
+  apply (force simp add: minus_mult_left[symmetric]) 
+  done
+
+lemma mult_le_0_iff:
+  "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b"
+  apply (insert zero_le_mult_iff [of "-a" b]) 
+  apply (force simp add: minus_mult_left[symmetric]) 
+  done
+
+lemma zero_le_square [simp]: "0 \<le> a * a"
+by (simp add: zero_le_mult_iff linear)
+
+lemma not_square_less_zero [simp]: "\<not> (a * a < 0)"
+by (simp add: not_less)
+
+text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
+   also with the relations @{text "\<le>"} and equality.*}
+
+text{*These ``disjunction'' versions produce two cases when the comparison is
+ an assumption, but effectively four when the comparison is a goal.*}
+
+lemma mult_less_cancel_right_disj:
+  "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
+  apply (cases "c = 0")
+  apply (auto simp add: neq_iff mult_strict_right_mono 
+                      mult_strict_right_mono_neg)
+  apply (auto simp add: not_less 
+                      not_le [symmetric, of "a*c"]
+                      not_le [symmetric, of a])
+  apply (erule_tac [!] notE)
+  apply (auto simp add: less_imp_le mult_right_mono 
+                      mult_right_mono_neg)
+  done
+
+lemma mult_less_cancel_left_disj:
+  "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
+  apply (cases "c = 0")
+  apply (auto simp add: neq_iff mult_strict_left_mono 
+                      mult_strict_left_mono_neg)
+  apply (auto simp add: not_less 
+                      not_le [symmetric, of "c*a"]
+                      not_le [symmetric, of a])
+  apply (erule_tac [!] notE)
+  apply (auto simp add: less_imp_le mult_left_mono 
+                      mult_left_mono_neg)
+  done
+
+text{*The ``conjunction of implication'' lemmas produce two cases when the
+comparison is a goal, but give four when the comparison is an assumption.*}
+
+lemma mult_less_cancel_right:
+  "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
+  using mult_less_cancel_right_disj [of a c b] by auto
+
+lemma mult_less_cancel_left:
+  "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
+  using mult_less_cancel_left_disj [of c a b] by auto
+
+lemma mult_le_cancel_right:
+   "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
+by (simp add: not_less [symmetric] mult_less_cancel_right_disj)
+
+lemma mult_le_cancel_left:
+  "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
+by (simp add: not_less [symmetric] mult_less_cancel_left_disj)
+
+lemma mult_le_cancel_left_pos:
+  "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b"
+by (auto simp: mult_le_cancel_left)
+
+lemma mult_le_cancel_left_neg:
+  "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a"
+by (auto simp: mult_le_cancel_left)
+
+lemma mult_less_cancel_left_pos:
+  "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b"
+by (auto simp: mult_less_cancel_left)
+
+lemma mult_less_cancel_left_neg:
+  "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a"
+by (auto simp: mult_less_cancel_left)
+
+end
+
+text{*Legacy - use @{text algebra_simps} *}
+lemmas ring_simps[noatp] = algebra_simps
+
+lemmas mult_sign_intros =
+  mult_nonneg_nonneg mult_nonneg_nonpos
+  mult_nonpos_nonneg mult_nonpos_nonpos
+  mult_pos_pos mult_pos_neg
+  mult_neg_pos mult_neg_neg
+
+class ordered_comm_ring = comm_ring + ordered_comm_semiring
+begin
+
+subclass ordered_ring ..
+subclass ordered_cancel_comm_semiring ..
+
+end
+
+class linordered_semidom = comm_semiring_1_cancel + linordered_comm_semiring_strict +
+  (*previously linordered_semiring*)
+  assumes zero_less_one [simp]: "0 < 1"
+begin
+
+lemma pos_add_strict:
+  shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c"
+  using add_strict_mono [of zero a b c] by simp
+
+lemma zero_le_one [simp]: "0 \<le> 1"
+by (rule zero_less_one [THEN less_imp_le]) 
+
+lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0"
+by (simp add: not_le) 
+
+lemma not_one_less_zero [simp]: "\<not> 1 < 0"
+by (simp add: not_less) 
+
+lemma less_1_mult:
+  assumes "1 < m" and "1 < n"
+  shows "1 < m * n"
+  using assms mult_strict_mono [of 1 m 1 n]
+    by (simp add:  less_trans [OF zero_less_one]) 
+
+end
+
+class linordered_idom = comm_ring_1 +
+  linordered_comm_semiring_strict + ordered_ab_group_add +
+  abs_if + sgn_if
+  (*previously linordered_ring*)
+begin
+
+subclass linordered_ring_strict ..
+subclass ordered_comm_ring ..
+subclass idom ..
+
+subclass linordered_semidom
+proof
+  have "0 \<le> 1 * 1" by (rule zero_le_square)
+  thus "0 < 1" by (simp add: le_less)
+qed 
+
+lemma linorder_neqE_linordered_idom:
+  assumes "x \<noteq> y" obtains "x < y" | "y < x"
+  using assms by (rule neqE)
+
+text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
+
+lemma mult_le_cancel_right1:
+  "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
+by (insert mult_le_cancel_right [of 1 c b], simp)
+
+lemma mult_le_cancel_right2:
+  "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
+by (insert mult_le_cancel_right [of a c 1], simp)
+
+lemma mult_le_cancel_left1:
+  "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
+by (insert mult_le_cancel_left [of c 1 b], simp)
+
+lemma mult_le_cancel_left2:
+  "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
+by (insert mult_le_cancel_left [of c a 1], simp)
+
+lemma mult_less_cancel_right1:
+  "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
+by (insert mult_less_cancel_right [of 1 c b], simp)
+
+lemma mult_less_cancel_right2:
+  "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
+by (insert mult_less_cancel_right [of a c 1], simp)
+
+lemma mult_less_cancel_left1:
+  "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
+by (insert mult_less_cancel_left [of c 1 b], simp)
+
+lemma mult_less_cancel_left2:
+  "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
+by (insert mult_less_cancel_left [of c a 1], simp)
+
+lemma sgn_sgn [simp]:
+  "sgn (sgn a) = sgn a"
+unfolding sgn_if by simp
+
+lemma sgn_0_0:
+  "sgn a = 0 \<longleftrightarrow> a = 0"
+unfolding sgn_if by simp
+
+lemma sgn_1_pos:
+  "sgn a = 1 \<longleftrightarrow> a > 0"
+unfolding sgn_if by (simp add: neg_equal_zero)
+
+lemma sgn_1_neg:
+  "sgn a = - 1 \<longleftrightarrow> a < 0"
+unfolding sgn_if by (auto simp add: equal_neg_zero)
+
+lemma sgn_pos [simp]:
+  "0 < a \<Longrightarrow> sgn a = 1"
+unfolding sgn_1_pos .
+
+lemma sgn_neg [simp]:
+  "a < 0 \<Longrightarrow> sgn a = - 1"
+unfolding sgn_1_neg .
+
+lemma sgn_times:
+  "sgn (a * b) = sgn a * sgn b"
+by (auto simp add: sgn_if zero_less_mult_iff)
+
+lemma abs_sgn: "abs k = k * sgn k"
+unfolding sgn_if abs_if by auto
+
+lemma sgn_greater [simp]:
+  "0 < sgn a \<longleftrightarrow> 0 < a"
+  unfolding sgn_if by auto
+
+lemma sgn_less [simp]:
+  "sgn a < 0 \<longleftrightarrow> a < 0"
+  unfolding sgn_if by auto
+
+lemma abs_dvd_iff [simp]: "(abs m) dvd k \<longleftrightarrow> m dvd k"
+  by (simp add: abs_if)
+
+lemma dvd_abs_iff [simp]: "m dvd (abs k) \<longleftrightarrow> m dvd k"
+  by (simp add: abs_if)
+
+lemma dvd_if_abs_eq:
+  "abs l = abs (k) \<Longrightarrow> l dvd k"
+by(subst abs_dvd_iff[symmetric]) simp
+
+end
+
+text {* Simprules for comparisons where common factors can be cancelled. *}
+
+lemmas mult_compare_simps[noatp] =
+    mult_le_cancel_right mult_le_cancel_left
+    mult_le_cancel_right1 mult_le_cancel_right2
+    mult_le_cancel_left1 mult_le_cancel_left2
+    mult_less_cancel_right mult_less_cancel_left
+    mult_less_cancel_right1 mult_less_cancel_right2
+    mult_less_cancel_left1 mult_less_cancel_left2
+    mult_cancel_right mult_cancel_left
+    mult_cancel_right1 mult_cancel_right2
+    mult_cancel_left1 mult_cancel_left2
+
+-- {* FIXME continue localization here *}
+
+subsection {* Reasoning about inequalities with division *}
+
+lemma mult_right_le_one_le: "0 <= (x::'a::linordered_idom) ==> 0 <= y ==> y <= 1
+    ==> x * y <= x"
+by (auto simp add: mult_compare_simps)
+
+lemma mult_left_le_one_le: "0 <= (x::'a::linordered_idom) ==> 0 <= y ==> y <= 1
+    ==> y * x <= x"
+by (auto simp add: mult_compare_simps)
+
+context linordered_semidom
+begin
+
+lemma less_add_one: "a < a + 1"
+proof -
+  have "a + 0 < a + 1"
+    by (blast intro: zero_less_one add_strict_left_mono)
+  thus ?thesis by simp
+qed
+
+lemma zero_less_two: "0 < 1 + 1"
+by (blast intro: less_trans zero_less_one less_add_one)
+
+end
+
+
+subsection {* Absolute Value *}
+
+context linordered_idom
+begin
+
+lemma mult_sgn_abs: "sgn x * abs x = x"
+  unfolding abs_if sgn_if by auto
+
+end
+
+lemma abs_one [simp]: "abs 1 = (1::'a::linordered_idom)"
+by (simp add: abs_if zero_less_one [THEN order_less_not_sym])
+
+class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs +
+  assumes abs_eq_mult:
+    "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>"
+
+context linordered_idom
+begin
+
+subclass ordered_ring_abs proof
+qed (auto simp add: abs_if not_less equal_neg_zero neg_equal_zero mult_less_0_iff)
+
+lemma abs_mult:
+  "abs (a * b) = abs a * abs b" 
+  by (rule abs_eq_mult) auto
+
+lemma abs_mult_self:
+  "abs a * abs a = a * a"
+  by (simp add: abs_if) 
+
+end
+
+lemma abs_mult_less:
+     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::linordered_idom)"
+proof -
+  assume ac: "abs a < c"
+  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
+  assume "abs b < d"
+  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
+qed
+
+lemmas eq_minus_self_iff[noatp] = equal_neg_zero
+
+lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::linordered_idom))"
+  unfolding order_less_le less_eq_neg_nonpos equal_neg_zero ..
+
+lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::linordered_idom))" 
+apply (simp add: order_less_le abs_le_iff)  
+apply (auto simp add: abs_if neg_less_eq_nonneg less_eq_neg_nonpos)
+done
+
+lemma abs_mult_pos: "(0::'a::linordered_idom) <= x ==> 
+    (abs y) * x = abs (y * x)"
+  apply (subst abs_mult)
+  apply simp
+done
+
+code_modulename SML
+  Rings Arith
+
+code_modulename OCaml
+  Rings Arith
+
+code_modulename Haskell
+  Rings Arith
+
+end