src/HOL/Library/Finite_Lattice.thy
changeset 56796 9f84219715a7
parent 56740 5ebaa364d8ab
child 60500 903bb1495239
--- a/src/HOL/Library/Finite_Lattice.thy	Tue Apr 29 21:54:26 2014 +0200
+++ b/src/HOL/Library/Finite_Lattice.thy	Tue Apr 29 22:50:55 2014 +0200
@@ -1,4 +1,6 @@
-(* Author: Alessandro Coglio *)
+(*  Title:      HOL/Library/Finite_Lattice.thy
+    Author:     Alessandro Coglio
+*)
 
 theory Finite_Lattice
 imports Product_Order
@@ -16,29 +18,27 @@
 The resulting class is a subclass of @{class complete_lattice}. *}
 
 class finite_lattice_complete = finite + lattice + bot + top + Inf + Sup +
-assumes bot_def: "bot = Inf_fin UNIV"
-assumes top_def: "top = Sup_fin UNIV"
-assumes Inf_def: "Inf A = Finite_Set.fold inf top A"
-assumes Sup_def: "Sup A = Finite_Set.fold sup bot A"
+  assumes bot_def: "bot = Inf_fin UNIV"
+  assumes top_def: "top = Sup_fin UNIV"
+  assumes Inf_def: "Inf A = Finite_Set.fold inf top A"
+  assumes Sup_def: "Sup A = Finite_Set.fold sup bot A"
 
 text {* The definitional assumptions
 on the operators @{const bot} and @{const top}
 of class @{class finite_lattice_complete}
 ensure that they yield bottom and top. *}
 
-lemma finite_lattice_complete_bot_least:
-"(bot::'a::finite_lattice_complete) \<le> x"
-by (auto simp: bot_def intro: Inf_fin.coboundedI)
+lemma finite_lattice_complete_bot_least: "(bot::'a::finite_lattice_complete) \<le> x"
+  by (auto simp: bot_def intro: Inf_fin.coboundedI)
 
 instance finite_lattice_complete \<subseteq> order_bot
-proof qed (auto simp: finite_lattice_complete_bot_least)
+  by default (auto simp: finite_lattice_complete_bot_least)
 
-lemma finite_lattice_complete_top_greatest:
-"(top::'a::finite_lattice_complete) \<ge> x"
-by (auto simp: top_def Sup_fin.coboundedI)
+lemma finite_lattice_complete_top_greatest: "(top::'a::finite_lattice_complete) \<ge> x"
+  by (auto simp: top_def Sup_fin.coboundedI)
 
 instance finite_lattice_complete \<subseteq> order_top
-proof qed (auto simp: finite_lattice_complete_top_greatest)
+  by default (auto simp: finite_lattice_complete_top_greatest)
 
 instance finite_lattice_complete \<subseteq> bounded_lattice ..
 
@@ -47,19 +47,18 @@
 of class @{class finite_lattice_complete}
 ensure that they yield infimum and supremum. *}
 
-lemma finite_lattice_complete_Inf_empty:
-  "Inf {} = (top :: 'a::finite_lattice_complete)"
+lemma finite_lattice_complete_Inf_empty: "Inf {} = (top :: 'a::finite_lattice_complete)"
   by (simp add: Inf_def)
 
-lemma finite_lattice_complete_Sup_empty:
-  "Sup {} = (bot :: 'a::finite_lattice_complete)"
+lemma finite_lattice_complete_Sup_empty: "Sup {} = (bot :: 'a::finite_lattice_complete)"
   by (simp add: Sup_def)
 
 lemma finite_lattice_complete_Inf_insert:
   fixes A :: "'a::finite_lattice_complete set"
   shows "Inf (insert x A) = inf x (Inf A)"
 proof -
-  interpret comp_fun_idem "inf :: 'a \<Rightarrow> _" by (fact comp_fun_idem_inf)
+  interpret comp_fun_idem "inf :: 'a \<Rightarrow> _"
+    by (fact comp_fun_idem_inf)
   show ?thesis by (simp add: Inf_def)
 qed
 
@@ -67,87 +66,87 @@
   fixes A :: "'a::finite_lattice_complete set"
   shows "Sup (insert x A) = sup x (Sup A)"
 proof -
-  interpret comp_fun_idem "sup :: 'a \<Rightarrow> _" by (fact comp_fun_idem_sup)
+  interpret comp_fun_idem "sup :: 'a \<Rightarrow> _"
+    by (fact comp_fun_idem_sup)
   show ?thesis by (simp add: Sup_def)
 qed
 
 lemma finite_lattice_complete_Inf_lower:
   "(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Inf A \<le> x"
-  using finite [of A] by (induct A) (auto simp add: finite_lattice_complete_Inf_insert intro: le_infI2)
+  using finite [of A]
+  by (induct A) (auto simp add: finite_lattice_complete_Inf_insert intro: le_infI2)
 
 lemma finite_lattice_complete_Inf_greatest:
   "\<forall>x::'a::finite_lattice_complete \<in> A. z \<le> x \<Longrightarrow> z \<le> Inf A"
-  using finite [of A] by (induct A) (auto simp add: finite_lattice_complete_Inf_empty finite_lattice_complete_Inf_insert)
+  using finite [of A]
+  by (induct A) (auto simp add: finite_lattice_complete_Inf_empty finite_lattice_complete_Inf_insert)
 
 lemma finite_lattice_complete_Sup_upper:
   "(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Sup A \<ge> x"
-  using finite [of A] by (induct A) (auto simp add: finite_lattice_complete_Sup_insert intro: le_supI2)
+  using finite [of A]
+  by (induct A) (auto simp add: finite_lattice_complete_Sup_insert intro: le_supI2)
 
 lemma finite_lattice_complete_Sup_least:
   "\<forall>x::'a::finite_lattice_complete \<in> A. z \<ge> x \<Longrightarrow> z \<ge> Sup A"
-  using finite [of A] by (induct A) (auto simp add: finite_lattice_complete_Sup_empty finite_lattice_complete_Sup_insert)
+  using finite [of A]
+  by (induct A) (auto simp add: finite_lattice_complete_Sup_empty finite_lattice_complete_Sup_insert)
 
 instance finite_lattice_complete \<subseteq> complete_lattice
 proof
 qed (auto simp:
- finite_lattice_complete_Inf_lower
- finite_lattice_complete_Inf_greatest
- finite_lattice_complete_Sup_upper
- finite_lattice_complete_Sup_least
- finite_lattice_complete_Inf_empty
- finite_lattice_complete_Sup_empty)
+  finite_lattice_complete_Inf_lower
+  finite_lattice_complete_Inf_greatest
+  finite_lattice_complete_Sup_upper
+  finite_lattice_complete_Sup_least
+  finite_lattice_complete_Inf_empty
+  finite_lattice_complete_Sup_empty)
 
 text {* The product of two finite lattices is already a finite lattice. *}
 
 lemma finite_bot_prod:
   "(bot :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete)) =
-   Inf_fin UNIV"
-by (metis Inf_fin.coboundedI UNIV_I bot.extremum_uniqueI finite_UNIV)
+    Inf_fin UNIV"
+  by (metis Inf_fin.coboundedI UNIV_I bot.extremum_uniqueI finite_UNIV)
 
 lemma finite_top_prod:
   "(top :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete)) =
-   Sup_fin UNIV"
-by (metis Sup_fin.coboundedI UNIV_I top.extremum_uniqueI finite_UNIV)
+    Sup_fin UNIV"
+  by (metis Sup_fin.coboundedI UNIV_I top.extremum_uniqueI finite_UNIV)
 
 lemma finite_Inf_prod:
   "Inf(A :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) =
-  Finite_Set.fold inf top A"
-by (metis Inf_fold_inf finite_code)
+    Finite_Set.fold inf top A"
+  by (metis Inf_fold_inf finite_code)
 
 lemma finite_Sup_prod:
   "Sup (A :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) =
-  Finite_Set.fold sup bot A"
-by (metis Sup_fold_sup finite_code)
+    Finite_Set.fold sup bot A"
+  by (metis Sup_fold_sup finite_code)
 
-instance prod ::
-  (finite_lattice_complete, finite_lattice_complete) finite_lattice_complete
-proof
-qed (auto simp: finite_bot_prod finite_top_prod finite_Inf_prod finite_Sup_prod)
+instance prod :: (finite_lattice_complete, finite_lattice_complete) finite_lattice_complete
+  by default (auto simp: finite_bot_prod finite_top_prod finite_Inf_prod finite_Sup_prod)
 
 text {* Functions with a finite domain and with a finite lattice as codomain
 already form a finite lattice. *}
 
-lemma finite_bot_fun:
-  "(bot :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Inf_fin UNIV"
-by (metis Inf_UNIV Inf_fin_Inf empty_not_UNIV finite_code)
+lemma finite_bot_fun: "(bot :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Inf_fin UNIV"
+  by (metis Inf_UNIV Inf_fin_Inf empty_not_UNIV finite_code)
 
-lemma finite_top_fun:
-  "(top :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Sup_fin UNIV"
-by (metis Sup_UNIV Sup_fin_Sup empty_not_UNIV finite_code)
+lemma finite_top_fun: "(top :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Sup_fin UNIV"
+  by (metis Sup_UNIV Sup_fin_Sup empty_not_UNIV finite_code)
 
 lemma finite_Inf_fun:
   "Inf (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) =
-  Finite_Set.fold inf top A"
-by (metis Inf_fold_inf finite_code)
+    Finite_Set.fold inf top A"
+  by (metis Inf_fold_inf finite_code)
 
 lemma finite_Sup_fun:
   "Sup (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) =
-  Finite_Set.fold sup bot A"
-by (metis Sup_fold_sup finite_code)
+    Finite_Set.fold sup bot A"
+  by (metis Sup_fold_sup finite_code)
 
 instance "fun" :: (finite, finite_lattice_complete) finite_lattice_complete
-proof
-qed (auto simp: finite_bot_fun finite_top_fun finite_Inf_fun finite_Sup_fun)
+  by default (auto simp: finite_bot_fun finite_top_fun finite_Inf_fun finite_Sup_fun)
 
 
 subsection {* Finite Distributive Lattices *}
@@ -161,22 +160,22 @@
 
 lemma finite_distrib_lattice_complete_sup_Inf:
   "sup (x::'a::finite_distrib_lattice_complete) (Inf A) = (INF y:A. sup x y)"
-  using finite by (induct A rule: finite_induct)
-    (simp_all add: sup_inf_distrib1)
+  using finite
+  by (induct A rule: finite_induct) (simp_all add: sup_inf_distrib1)
 
 lemma finite_distrib_lattice_complete_inf_Sup:
   "inf (x::'a::finite_distrib_lattice_complete) (Sup A) = (SUP y:A. inf x y)"
-apply (rule finite_induct)
-apply (metis finite_code)
-apply (metis SUP_empty Sup_empty inf_bot_right)
-apply (metis SUP_insert Sup_insert inf_sup_distrib1)
-done
+  apply (rule finite_induct)
+  apply (metis finite_code)
+  apply (metis SUP_empty Sup_empty inf_bot_right)
+  apply (metis SUP_insert Sup_insert inf_sup_distrib1)
+  done
 
 instance finite_distrib_lattice_complete \<subseteq> complete_distrib_lattice
 proof
 qed (auto simp:
- finite_distrib_lattice_complete_sup_Inf
- finite_distrib_lattice_complete_inf_Sup)
+  finite_distrib_lattice_complete_sup_Inf
+  finite_distrib_lattice_complete_inf_Sup)
 
 text {* The product of two finite distributive lattices
 is already a finite distributive lattice. *}
@@ -184,7 +183,7 @@
 instance prod ::
   (finite_distrib_lattice_complete, finite_distrib_lattice_complete)
   finite_distrib_lattice_complete
-..
+  ..
 
 text {* Functions with a finite domain
 and with a finite distributive lattice as codomain
@@ -192,7 +191,7 @@
 
 instance "fun" ::
   (finite, finite_distrib_lattice_complete) finite_distrib_lattice_complete
-..
+  ..
 
 
 subsection {* Linear Orders *}
@@ -206,8 +205,8 @@
 The resulting class is a subclass of @{class distrib_lattice}. *}
 
 class linorder_lattice = linorder + inf + sup +
-assumes inf_def: "inf x y = (if x \<le> y then x else y)"
-assumes sup_def: "sup x y = (if x \<ge> y then x else y)"
+  assumes inf_def: "inf x y = (if x \<le> y then x else y)"
+  assumes sup_def: "sup x y = (if x \<ge> y then x else y)"
 
 text {* The definitional assumptions
 on the operators @{const inf} and @{const sup}
@@ -216,39 +215,39 @@
 and that they distribute over each other. *}
 
 lemma linorder_lattice_inf_le1: "inf (x::'a::linorder_lattice) y \<le> x"
-unfolding inf_def by (metis (full_types) linorder_linear)
+  unfolding inf_def by (metis (full_types) linorder_linear)
 
 lemma linorder_lattice_inf_le2: "inf (x::'a::linorder_lattice) y \<le> y"
-unfolding inf_def by (metis (full_types) linorder_linear)
+  unfolding inf_def by (metis (full_types) linorder_linear)
 
 lemma linorder_lattice_inf_greatest:
   "(x::'a::linorder_lattice) \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> inf y z"
-unfolding inf_def by (metis (full_types))
+  unfolding inf_def by (metis (full_types))
 
 lemma linorder_lattice_sup_ge1: "sup (x::'a::linorder_lattice) y \<ge> x"
-unfolding sup_def by (metis (full_types) linorder_linear)
+  unfolding sup_def by (metis (full_types) linorder_linear)
 
 lemma linorder_lattice_sup_ge2: "sup (x::'a::linorder_lattice) y \<ge> y"
-unfolding sup_def by (metis (full_types) linorder_linear)
+  unfolding sup_def by (metis (full_types) linorder_linear)
 
 lemma linorder_lattice_sup_least:
   "(x::'a::linorder_lattice) \<ge> y \<Longrightarrow> x \<ge> z \<Longrightarrow> x \<ge> sup y z"
-by (auto simp: sup_def)
+  by (auto simp: sup_def)
 
 lemma linorder_lattice_sup_inf_distrib1:
   "sup (x::'a::linorder_lattice) (inf y z) = inf (sup x y) (sup x z)"
-by (auto simp: inf_def sup_def)
- 
+  by (auto simp: inf_def sup_def)
+
 instance linorder_lattice \<subseteq> distrib_lattice
-proof                                                     
+proof
 qed (auto simp:
- linorder_lattice_inf_le1
- linorder_lattice_inf_le2
- linorder_lattice_inf_greatest
- linorder_lattice_sup_ge1
- linorder_lattice_sup_ge2
- linorder_lattice_sup_least
- linorder_lattice_sup_inf_distrib1)
+  linorder_lattice_inf_le1
+  linorder_lattice_inf_le2
+  linorder_lattice_inf_greatest
+  linorder_lattice_sup_ge1
+  linorder_lattice_sup_ge2
+  linorder_lattice_sup_least
+  linorder_lattice_sup_inf_distrib1)
 
 
 subsection {* Finite Linear Orders *}
@@ -265,6 +264,5 @@
 
 instance finite_linorder_complete \<subseteq> finite_distrib_lattice_complete ..
 
-
 end