--- a/src/ZF/Induct/FoldSet.thy Tue Sep 27 17:46:52 2022 +0100
+++ b/src/ZF/Induct/FoldSet.thy Tue Sep 27 17:54:20 2022 +0100
@@ -144,7 +144,7 @@
lemma (in fold_typing) fold_equality:
"\<langle>C,y\<rangle> \<in> fold_set(A,B,f,e) \<Longrightarrow> fold[B](f,e,C) = y"
-apply (unfold fold_def)
+ unfolding fold_def
apply (frule fold_set.dom_subset [THEN subsetD], clarify)
apply (rule the_equality)
apply (rule_tac [2] A=C in fold_typing.fold_set_determ)
@@ -155,7 +155,7 @@
done
lemma fold_0 [simp]: "e \<in> B \<Longrightarrow> fold[B](f,e,0) = e"
-apply (unfold fold_def)
+ unfolding fold_def
apply (blast elim!: empty_fold_setE intro: fold_set.intros)
done
@@ -193,7 +193,7 @@
lemma (in fold_typing) fold_cons:
"\<lbrakk>C\<in>Fin(A); c\<in>A; c\<notin>C\<rbrakk>
\<Longrightarrow> fold[B](f, e, cons(c, C)) = f(c, fold[B](f, e, C))"
-apply (unfold fold_def)
+ unfolding fold_def
apply (simp add: fold_cons_lemma)
apply (rule the_equality, auto)
apply (subgoal_tac [2] "\<langle>C, y\<rangle> \<in> fold_set(A, B, f, e)")
@@ -363,7 +363,7 @@
"\<lbrakk>setsum(f, A) = $# succ(n); n\<in>nat\<rbrakk>\<Longrightarrow> \<exists>a\<in>A. #0 $< f(a)"
apply (case_tac "Finite (A) ")
apply (blast intro: setsum_succD_lemma)
-apply (unfold setsum_def)
+ unfolding setsum_def
apply (auto simp del: int_of_0 int_of_succ simp add: int_succ_int_1 [symmetric] int_of_0 [symmetric])
done