--- a/src/HOLCF/IOA/meta_theory/CompoTraces.thy Thu Feb 18 12:36:09 2010 -0800
+++ b/src/HOLCF/IOA/meta_theory/CompoTraces.thy Thu Feb 18 13:29:59 2010 -0800
@@ -207,18 +207,18 @@
(* a:A, a:B *)
apply simp
apply (rule Forall_Conc_impl [THEN mp])
-apply (simp add: ForallPTakewhileQ intA_is_not_actB int_is_act)
+apply (simp add: intA_is_not_actB int_is_act)
apply (rule Forall_Conc_impl [THEN mp])
-apply (simp add: ForallPTakewhileQ intA_is_not_actB int_is_act)
+apply (simp add: intA_is_not_actB int_is_act)
(* a:A,a~:B *)
apply simp
apply (rule Forall_Conc_impl [THEN mp])
-apply (simp add: ForallPTakewhileQ intA_is_not_actB int_is_act)
+apply (simp add: intA_is_not_actB int_is_act)
apply (case_tac "a:act B")
(* a~:A, a:B *)
apply simp
apply (rule Forall_Conc_impl [THEN mp])
-apply (simp add: ForallPTakewhileQ intA_is_not_actB int_is_act)
+apply (simp add: intA_is_not_actB int_is_act)
(* a~:A,a~:B *)
apply auto
done
@@ -230,7 +230,7 @@
[@{thm Forall_def}, @{thm sforall_def}, @{thm mksch_def}] 1 *})
apply auto
apply (rule Forall_Conc_impl [THEN mp])
-apply (simp add: ForallPTakewhileQ intA_is_not_actB int_is_act)
+apply (simp add: intA_is_not_actB int_is_act)
done
lemma ForallAnBmksch [rule_format (no_asm)]: "!!A B. compatible A B ==>
@@ -240,7 +240,7 @@
[@{thm Forall_def}, @{thm sforall_def}, @{thm mksch_def}] 1 *})
apply auto
apply (rule Forall_Conc_impl [THEN mp])
-apply (simp add: ForallPTakewhileQ intA_is_not_actB int_is_act)
+apply (simp add: intA_is_not_actB int_is_act)
done
(* safe-tac makes too many case distinctions with this lemma in the next proof *)
@@ -345,14 +345,12 @@
apply (rule_tac x = "Takewhile (%a. a:int B) $y @@ a>>y1" in exI)
apply (rule_tac x = "y2" in exI)
(* elminate all obligations up to two depending on Conc_assoc *)
-apply (simp add: ForallPTakewhileQ intA_is_not_actB int_is_act int_is_not_ext FilterConc)
+apply (simp add: intA_is_not_actB int_is_act int_is_not_ext FilterConc)
apply (simp (no_asm) add: Conc_assoc FilterConc)
done
lemmas reduceA_mksch = conjI [THEN [6] conjI [THEN [5] reduceA_mksch1]]
-declare FilterConc [simp del]
-
lemma reduceB_mksch1 [rule_format]:
" [| Finite a_s; is_asig(asig_of A); is_asig(asig_of B);compatible A B|] ==>
! x. Forall (%x. x:act A) x & Forall (%x. x:act A & x~:act B) a_s &
@@ -393,7 +391,7 @@
apply (rule_tac x = "Takewhile (%a. a:int A) $x @@ a>>x1" in exI)
apply (rule_tac x = "x2" in exI)
(* elminate all obligations up to two depending on Conc_assoc *)
-apply (simp add: ForallPTakewhileQ intA_is_not_actB int_is_act int_is_not_ext FilterConc)
+apply (simp add: intA_is_not_actB int_is_act int_is_not_ext FilterConc)
apply (simp (no_asm) add: Conc_assoc FilterConc)
done
@@ -573,7 +571,7 @@
apply (rule take_reduction)
(* f A (tw iA) = tw ~eA *)
-apply (simp add: FilterPTakewhileQid int_is_act not_ext_is_int_or_not_act)
+apply (simp add: int_is_act not_ext_is_int_or_not_act)
apply (rule refl)
apply (simp add: int_is_act not_ext_is_int_or_not_act)
apply (rotate_tac -11)
@@ -582,7 +580,7 @@
(* assumption Forall tr *)
(* assumption schB *)
-apply (simp add: Forall_Conc ext_and_act)
+apply (simp add: ext_and_act)
(* assumption schA *)
apply (drule_tac x = "schA" and g = "Filter (%a. a:act A) $rs" in subst_lemma2)
apply assumption
@@ -595,7 +593,7 @@
(* assumption Forall schA *)
apply (drule_tac s = "schA" and P = "Forall (%x. x:act A) " in subst)
apply assumption
-apply (simp add: ForallPTakewhileQ int_is_act)
+apply (simp add: int_is_act)
(* case x:actions(asig_of A) & x: actions(asig_of B) *)
@@ -623,7 +621,7 @@
apply assumption
(* f A (tw iA) = tw ~eA *)
-apply (simp add: FilterPTakewhileQid int_is_act not_ext_is_int_or_not_act)
+apply (simp add: int_is_act not_ext_is_int_or_not_act)
(* rewrite assumption forall and schB *)
apply (rotate_tac 13)
@@ -792,7 +790,7 @@
apply (rule take_reduction)
(* f B (tw iB) = tw ~eB *)
-apply (simp add: FilterPTakewhileQid int_is_act not_ext_is_int_or_not_act)
+apply (simp add: int_is_act not_ext_is_int_or_not_act)
apply (rule refl)
apply (simp add: int_is_act not_ext_is_int_or_not_act)
apply (rotate_tac -11)
@@ -800,7 +798,7 @@
(* now conclusion fulfills induction hypothesis, but assumptions are not ready *)
(* assumption schA *)
-apply (simp add: Forall_Conc ext_and_act)
+apply (simp add: ext_and_act)
(* assumption schB *)
apply (drule_tac x = "schB" and g = "Filter (%a. a:act B) $rs" in subst_lemma2)
apply assumption
@@ -813,7 +811,7 @@
(* assumption Forall schB *)
apply (drule_tac s = "schB" and P = "Forall (%x. x:act B) " in subst)
apply assumption
-apply (simp add: ForallPTakewhileQ int_is_act)
+apply (simp add: int_is_act)
(* case x:actions(asig_of A) & x: actions(asig_of B) *)
@@ -840,7 +838,7 @@
apply assumption
(* f B (tw iB) = tw ~eB *)
-apply (simp add: FilterPTakewhileQid int_is_act not_ext_is_int_or_not_act)
+apply (simp add: int_is_act not_ext_is_int_or_not_act)
(* rewrite assumption forall and schB *)
apply (rotate_tac 13)