--- a/src/HOL/Library/Extended_Real.thy Mon Mar 17 11:30:39 2025 +0100
+++ b/src/HOL/Library/Extended_Real.thy Mon Mar 17 16:29:48 2025 +0100
@@ -298,7 +298,7 @@
| "real_of_ereal \<infinity> = 0"
| "real_of_ereal (-\<infinity>) = 0"
by (auto intro: ereal_cases)
-termination by standard (rule wf_empty)
+termination by standard (rule wf_on_bot)
lemma real_of_ereal[simp]:
"real_of_ereal (- x :: ereal) = - (real_of_ereal x)"
@@ -327,7 +327,7 @@
| "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)"
| "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)"
by (auto intro: ereal_cases)
-termination proof qed (rule wf_empty)
+termination proof qed (rule wf_on_bot)
instance ..
@@ -377,7 +377,7 @@
with prems show P
by (cases rule: ereal2_cases[of a b]) auto
qed auto
-termination by standard (rule wf_empty)
+termination by standard (rule wf_on_bot)
lemma Infty_neq_0[simp]:
"(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)"
@@ -852,7 +852,7 @@
| "sgn (\<infinity>::ereal) = 1"
| "sgn (-\<infinity>::ereal) = -1"
by (auto intro: ereal_cases)
-termination by standard (rule wf_empty)
+termination by standard (rule wf_on_bot)
function times_ereal where
"ereal r * ereal p = ereal (r * p)"