src/HOL/IMP/BExp.thy
changeset 53015 a1119cf551e8
parent 49920 26a0263f9f46
child 54846 bf86b2002c96
--- a/src/HOL/IMP/BExp.thy	Tue Aug 13 14:20:22 2013 +0200
+++ b/src/HOL/IMP/BExp.thy	Tue Aug 13 16:25:47 2013 +0200
@@ -10,8 +10,8 @@
 fun bval :: "bexp \<Rightarrow> state \<Rightarrow> bool" where
 "bval (Bc v) s = v" |
 "bval (Not b) s = (\<not> bval b s)" |
-"bval (And b\<^isub>1 b\<^isub>2) s = (bval b\<^isub>1 s \<and> bval b\<^isub>2 s)" |
-"bval (Less a\<^isub>1 a\<^isub>2) s = (aval a\<^isub>1 s < aval a\<^isub>2 s)"
+"bval (And b\<^sub>1 b\<^sub>2) s = (bval b\<^sub>1 s \<and> bval b\<^sub>2 s)" |
+"bval (Less a\<^sub>1 a\<^sub>2) s = (aval a\<^sub>1 s < aval a\<^sub>2 s)"
 text_raw{*}%endsnip*}
 
 value "bval (Less (V ''x'') (Plus (N 3) (V ''y'')))
@@ -33,8 +33,8 @@
 
 text_raw{*\snip{BExplessdef}{0}{2}{% *}
 fun less :: "aexp \<Rightarrow> aexp \<Rightarrow> bexp" where
-"less (N n\<^isub>1) (N n\<^isub>2) = Bc(n\<^isub>1 < n\<^isub>2)" |
-"less a\<^isub>1 a\<^isub>2 = Less a\<^isub>1 a\<^isub>2"
+"less (N n\<^sub>1) (N n\<^sub>2) = Bc(n\<^sub>1 < n\<^sub>2)" |
+"less a\<^sub>1 a\<^sub>2 = Less a\<^sub>1 a\<^sub>2"
 text_raw{*}%endsnip*}
 
 lemma [simp]: "bval (less a1 a2) s = (aval a1 s < aval a2 s)"
@@ -48,7 +48,7 @@
 "and b (Bc True) = b" |
 "and (Bc False) b = Bc False" |
 "and b (Bc False) = Bc False" |
-"and b\<^isub>1 b\<^isub>2 = And b\<^isub>1 b\<^isub>2"
+"and b\<^sub>1 b\<^sub>2 = And b\<^sub>1 b\<^sub>2"
 text_raw{*}%endsnip*}
 
 lemma bval_and[simp]: "bval (and b1 b2) s = (bval b1 s \<and> bval b2 s)"
@@ -74,8 +74,8 @@
 fun bsimp :: "bexp \<Rightarrow> bexp" where
 "bsimp (Bc v) = Bc v" |
 "bsimp (Not b) = not(bsimp b)" |
-"bsimp (And b\<^isub>1 b\<^isub>2) = and (bsimp b\<^isub>1) (bsimp b\<^isub>2)" |
-"bsimp (Less a\<^isub>1 a\<^isub>2) = less (asimp a\<^isub>1) (asimp a\<^isub>2)"
+"bsimp (And b\<^sub>1 b\<^sub>2) = and (bsimp b\<^sub>1) (bsimp b\<^sub>2)" |
+"bsimp (Less a\<^sub>1 a\<^sub>2) = less (asimp a\<^sub>1) (asimp a\<^sub>2)"
 text_raw{*}%endsnip*}
 
 value "bsimp (And (Less (N 0) (N 1)) b)"