src/HOL/Metis_Examples/Binary_Tree.thy
changeset 53015 a1119cf551e8
parent 50705 0e943b33d907
child 54864 a064732223ad
--- a/src/HOL/Metis_Examples/Binary_Tree.thy	Tue Aug 13 14:20:22 2013 +0200
+++ b/src/HOL/Metis_Examples/Binary_Tree.thy	Tue Aug 13 16:25:47 2013 +0200
@@ -59,9 +59,9 @@
 proof (induct t)
   case Lf thus ?case
   proof -
-    let "?p\<^isub>1 x\<^isub>1" = "x\<^isub>1 \<noteq> n_leaves (reflect (Lf::'a bt))"
-    have "\<not> ?p\<^isub>1 (Suc 0)" by (metis reflect.simps(1) n_leaves.simps(1))
-    hence "\<not> ?p\<^isub>1 (n_leaves (Lf::'a bt))" by (metis n_leaves.simps(1))
+    let "?p\<^sub>1 x\<^sub>1" = "x\<^sub>1 \<noteq> n_leaves (reflect (Lf::'a bt))"
+    have "\<not> ?p\<^sub>1 (Suc 0)" by (metis reflect.simps(1) n_leaves.simps(1))
+    hence "\<not> ?p\<^sub>1 (n_leaves (Lf::'a bt))" by (metis n_leaves.simps(1))
     thus "n_leaves (reflect (Lf::'a bt)) = n_leaves (Lf::'a bt)" by metis
   qed
 next