--- a/src/HOL/Predicate_Compile_Examples/Examples.thy Tue Aug 13 14:20:22 2013 +0200
+++ b/src/HOL/Predicate_Compile_Examples/Examples.thy Tue Aug 13 16:25:47 2013 +0200
@@ -77,59 +77,59 @@
datatype alphabet = a | b
-inductive_set S\<^isub>1 and A\<^isub>1 and B\<^isub>1 where
- "[] \<in> S\<^isub>1"
-| "w \<in> A\<^isub>1 \<Longrightarrow> b # w \<in> S\<^isub>1"
-| "w \<in> B\<^isub>1 \<Longrightarrow> a # w \<in> S\<^isub>1"
-| "w \<in> S\<^isub>1 \<Longrightarrow> a # w \<in> A\<^isub>1"
-| "w \<in> S\<^isub>1 \<Longrightarrow> b # w \<in> S\<^isub>1"
-| "\<lbrakk>v \<in> B\<^isub>1; v \<in> B\<^isub>1\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>1"
+inductive_set S\<^sub>1 and A\<^sub>1 and B\<^sub>1 where
+ "[] \<in> S\<^sub>1"
+| "w \<in> A\<^sub>1 \<Longrightarrow> b # w \<in> S\<^sub>1"
+| "w \<in> B\<^sub>1 \<Longrightarrow> a # w \<in> S\<^sub>1"
+| "w \<in> S\<^sub>1 \<Longrightarrow> a # w \<in> A\<^sub>1"
+| "w \<in> S\<^sub>1 \<Longrightarrow> b # w \<in> S\<^sub>1"
+| "\<lbrakk>v \<in> B\<^sub>1; v \<in> B\<^sub>1\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^sub>1"
-code_pred [inductify] S\<^isub>1p .
-code_pred [random_dseq inductify] S\<^isub>1p .
-thm S\<^isub>1p.equation
-thm S\<^isub>1p.random_dseq_equation
+code_pred [inductify] S\<^sub>1p .
+code_pred [random_dseq inductify] S\<^sub>1p .
+thm S\<^sub>1p.equation
+thm S\<^sub>1p.random_dseq_equation
-values [random_dseq 5, 5, 5] 5 "{x. S\<^isub>1p x}"
+values [random_dseq 5, 5, 5] 5 "{x. S\<^sub>1p x}"
-inductive_set S\<^isub>2 and A\<^isub>2 and B\<^isub>2 where
- "[] \<in> S\<^isub>2"
-| "w \<in> A\<^isub>2 \<Longrightarrow> b # w \<in> S\<^isub>2"
-| "w \<in> B\<^isub>2 \<Longrightarrow> a # w \<in> S\<^isub>2"
-| "w \<in> S\<^isub>2 \<Longrightarrow> a # w \<in> A\<^isub>2"
-| "w \<in> S\<^isub>2 \<Longrightarrow> b # w \<in> B\<^isub>2"
-| "\<lbrakk>v \<in> B\<^isub>2; v \<in> B\<^isub>2\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>2"
+inductive_set S\<^sub>2 and A\<^sub>2 and B\<^sub>2 where
+ "[] \<in> S\<^sub>2"
+| "w \<in> A\<^sub>2 \<Longrightarrow> b # w \<in> S\<^sub>2"
+| "w \<in> B\<^sub>2 \<Longrightarrow> a # w \<in> S\<^sub>2"
+| "w \<in> S\<^sub>2 \<Longrightarrow> a # w \<in> A\<^sub>2"
+| "w \<in> S\<^sub>2 \<Longrightarrow> b # w \<in> B\<^sub>2"
+| "\<lbrakk>v \<in> B\<^sub>2; v \<in> B\<^sub>2\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^sub>2"
-code_pred [random_dseq inductify] S\<^isub>2p .
-thm S\<^isub>2p.random_dseq_equation
-thm A\<^isub>2p.random_dseq_equation
-thm B\<^isub>2p.random_dseq_equation
+code_pred [random_dseq inductify] S\<^sub>2p .
+thm S\<^sub>2p.random_dseq_equation
+thm A\<^sub>2p.random_dseq_equation
+thm B\<^sub>2p.random_dseq_equation
-values [random_dseq 5, 5, 5] 10 "{x. S\<^isub>2p x}"
+values [random_dseq 5, 5, 5] 10 "{x. S\<^sub>2p x}"
-inductive_set S\<^isub>3 and A\<^isub>3 and B\<^isub>3 where
- "[] \<in> S\<^isub>3"
-| "w \<in> A\<^isub>3 \<Longrightarrow> b # w \<in> S\<^isub>3"
-| "w \<in> B\<^isub>3 \<Longrightarrow> a # w \<in> S\<^isub>3"
-| "w \<in> S\<^isub>3 \<Longrightarrow> a # w \<in> A\<^isub>3"
-| "w \<in> S\<^isub>3 \<Longrightarrow> b # w \<in> B\<^isub>3"
-| "\<lbrakk>v \<in> B\<^isub>3; w \<in> B\<^isub>3\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>3"
+inductive_set S\<^sub>3 and A\<^sub>3 and B\<^sub>3 where
+ "[] \<in> S\<^sub>3"
+| "w \<in> A\<^sub>3 \<Longrightarrow> b # w \<in> S\<^sub>3"
+| "w \<in> B\<^sub>3 \<Longrightarrow> a # w \<in> S\<^sub>3"
+| "w \<in> S\<^sub>3 \<Longrightarrow> a # w \<in> A\<^sub>3"
+| "w \<in> S\<^sub>3 \<Longrightarrow> b # w \<in> B\<^sub>3"
+| "\<lbrakk>v \<in> B\<^sub>3; w \<in> B\<^sub>3\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^sub>3"
-code_pred [inductify, skip_proof] S\<^isub>3p .
-thm S\<^isub>3p.equation
+code_pred [inductify, skip_proof] S\<^sub>3p .
+thm S\<^sub>3p.equation
-values 10 "{x. S\<^isub>3p x}"
+values 10 "{x. S\<^sub>3p x}"
-inductive_set S\<^isub>4 and A\<^isub>4 and B\<^isub>4 where
- "[] \<in> S\<^isub>4"
-| "w \<in> A\<^isub>4 \<Longrightarrow> b # w \<in> S\<^isub>4"
-| "w \<in> B\<^isub>4 \<Longrightarrow> a # w \<in> S\<^isub>4"
-| "w \<in> S\<^isub>4 \<Longrightarrow> a # w \<in> A\<^isub>4"
-| "\<lbrakk>v \<in> A\<^isub>4; w \<in> A\<^isub>4\<rbrakk> \<Longrightarrow> b # v @ w \<in> A\<^isub>4"
-| "w \<in> S\<^isub>4 \<Longrightarrow> b # w \<in> B\<^isub>4"
-| "\<lbrakk>v \<in> B\<^isub>4; w \<in> B\<^isub>4\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^isub>4"
+inductive_set S\<^sub>4 and A\<^sub>4 and B\<^sub>4 where
+ "[] \<in> S\<^sub>4"
+| "w \<in> A\<^sub>4 \<Longrightarrow> b # w \<in> S\<^sub>4"
+| "w \<in> B\<^sub>4 \<Longrightarrow> a # w \<in> S\<^sub>4"
+| "w \<in> S\<^sub>4 \<Longrightarrow> a # w \<in> A\<^sub>4"
+| "\<lbrakk>v \<in> A\<^sub>4; w \<in> A\<^sub>4\<rbrakk> \<Longrightarrow> b # v @ w \<in> A\<^sub>4"
+| "w \<in> S\<^sub>4 \<Longrightarrow> b # w \<in> B\<^sub>4"
+| "\<lbrakk>v \<in> B\<^sub>4; w \<in> B\<^sub>4\<rbrakk> \<Longrightarrow> a # v @ w \<in> B\<^sub>4"
-code_pred (expected_modes: o => bool, i => bool) S\<^isub>4p .
+code_pred (expected_modes: o => bool, i => bool) S\<^sub>4p .
hide_const a b
@@ -272,7 +272,7 @@
fun aval :: "aexp \<Rightarrow> state' \<Rightarrow> nat" where
"aval (N n) _ = n" |
"aval (V x) st = st x" |
-"aval (Plus e\<^isub>1 e\<^isub>2) st = aval e\<^isub>1 st + aval e\<^isub>2 st"
+"aval (Plus e\<^sub>1 e\<^sub>2) st = aval e\<^sub>1 st + aval e\<^sub>2 st"
datatype bexp = B bool | Not bexp | And bexp bexp | Less aexp aexp
@@ -280,7 +280,7 @@
"bval (B b) _ = b" |
"bval (Not b) st = (\<not> bval b st)" |
"bval (And b1 b2) st = (bval b1 st \<and> bval b2 st)" |
-"bval (Less a\<^isub>1 a\<^isub>2) st = (aval a\<^isub>1 st < aval a\<^isub>2 st)"
+"bval (Less a\<^sub>1 a\<^sub>2) st = (aval a\<^sub>1 st < aval a\<^sub>2 st)"
datatype
com' = SKIP
@@ -295,14 +295,14 @@
Skip: "(SKIP,s) \<Rightarrow> s"
| Assign: "(x ::= a,s) \<Rightarrow> s(x := aval a s)"
-| Semi: "(c\<^isub>1,s\<^isub>1) \<Rightarrow> s\<^isub>2 \<Longrightarrow> (c\<^isub>2,s\<^isub>2) \<Rightarrow> s\<^isub>3 \<Longrightarrow> (c\<^isub>1;c\<^isub>2, s\<^isub>1) \<Rightarrow> s\<^isub>3"
+| Semi: "(c\<^sub>1,s\<^sub>1) \<Rightarrow> s\<^sub>2 \<Longrightarrow> (c\<^sub>2,s\<^sub>2) \<Rightarrow> s\<^sub>3 \<Longrightarrow> (c\<^sub>1;c\<^sub>2, s\<^sub>1) \<Rightarrow> s\<^sub>3"
-| IfTrue: "bval b s \<Longrightarrow> (c\<^isub>1,s) \<Rightarrow> t \<Longrightarrow> (IF b THEN c\<^isub>1 ELSE c\<^isub>2, s) \<Rightarrow> t"
-| IfFalse: "\<not>bval b s \<Longrightarrow> (c\<^isub>2,s) \<Rightarrow> t \<Longrightarrow> (IF b THEN c\<^isub>1 ELSE c\<^isub>2, s) \<Rightarrow> t"
+| IfTrue: "bval b s \<Longrightarrow> (c\<^sub>1,s) \<Rightarrow> t \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t"
+| IfFalse: "\<not>bval b s \<Longrightarrow> (c\<^sub>2,s) \<Rightarrow> t \<Longrightarrow> (IF b THEN c\<^sub>1 ELSE c\<^sub>2, s) \<Rightarrow> t"
| WhileFalse: "\<not>bval b s \<Longrightarrow> (WHILE b DO c,s) \<Rightarrow> s"
-| WhileTrue: "bval b s\<^isub>1 \<Longrightarrow> (c,s\<^isub>1) \<Rightarrow> s\<^isub>2 \<Longrightarrow> (WHILE b DO c, s\<^isub>2) \<Rightarrow> s\<^isub>3
- \<Longrightarrow> (WHILE b DO c, s\<^isub>1) \<Rightarrow> s\<^isub>3"
+| WhileTrue: "bval b s\<^sub>1 \<Longrightarrow> (c,s\<^sub>1) \<Rightarrow> s\<^sub>2 \<Longrightarrow> (WHILE b DO c, s\<^sub>2) \<Rightarrow> s\<^sub>3
+ \<Longrightarrow> (WHILE b DO c, s\<^sub>1) \<Rightarrow> s\<^sub>3"
code_pred big_step .