src/HOL/Import/HOL4Compat.thy
changeset 14516 a183dec876ab
child 14620 1be590fd2422
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Import/HOL4Compat.thy	Fri Apr 02 17:37:45 2004 +0200
@@ -0,0 +1,533 @@
+theory HOL4Compat = HOL4Setup + Divides + Primes + Real:
+
+lemma EXISTS_UNIQUE_DEF: "(Ex1 P) = (Ex P & (ALL x y. P x & P y --> (x = y)))"
+  by auto
+
+lemma COND_DEF:"(If b t f) = (@x. ((b = True) --> (x = t)) & ((b = False) --> (x = f)))"
+  by auto
+
+constdefs
+  LET :: "['a \<Rightarrow> 'b,'a] \<Rightarrow> 'b"
+  "LET f s == f s"
+
+lemma [hol4rew]: "LET f s = Let s f"
+  by (simp add: LET_def Let_def)
+
+lemmas [hol4rew] = ONE_ONE_rew
+
+lemma bool_case_DEF: "(bool_case x y b) = (if b then x else y)"
+  by simp;
+
+lemma INR_INL_11: "(ALL y x. (Inl x = Inl y) = (x = y)) & (ALL y x. (Inr x = Inr y) = (x = y))"
+  by safe
+
+consts
+  ISL :: "'a + 'b => bool"
+  ISR :: "'a + 'b => bool"
+
+primrec ISL_def:
+  "ISL (Inl x) = True"
+  "ISL (Inr x) = False"
+
+primrec ISR_def:
+  "ISR (Inl x) = False"
+  "ISR (Inr x) = True"
+
+lemma ISL: "(ALL x. ISL (Inl x)) & (ALL y. ~ISL (Inr y))"
+  by simp
+
+lemma ISR: "(ALL x. ISR (Inr x)) & (ALL y. ~ISR (Inl y))"
+  by simp
+
+consts
+  OUTL :: "'a + 'b => 'a"
+  OUTR :: "'a + 'b => 'b"
+
+primrec OUTL_def:
+  "OUTL (Inl x) = x"
+
+primrec OUTR_def:
+  "OUTR (Inr x) = x"
+
+lemma OUTL: "OUTL (Inl x) = x"
+  by simp
+
+lemma OUTR: "OUTR (Inr x) = x"
+  by simp
+
+lemma sum_case_def: "(ALL f g x. sum_case f g (Inl x) = f x) & (ALL f g y. sum_case f g (Inr y) = g y)"
+  by simp;
+
+lemma one: "ALL v. v = ()"
+  by simp;
+
+lemma option_case_def: "(!u f. option_case u f None = u) & (!u f x. option_case u f (Some x) = f x)"
+  by simp
+
+lemma OPTION_MAP_DEF: "(!f x. option_map f (Some x) = Some (f x)) & (!f. option_map f None = None)"
+  by simp
+
+consts
+  IS_SOME :: "'a option => bool"
+  IS_NONE :: "'a option => bool"
+
+primrec IS_SOME_def:
+  "IS_SOME (Some x) = True"
+  "IS_SOME None = False"
+
+primrec IS_NONE_def:
+  "IS_NONE (Some x) = False"
+  "IS_NONE None = True"
+
+lemma IS_NONE_DEF: "(!x. IS_NONE (Some x) = False) & (IS_NONE None = True)"
+  by simp
+
+lemma IS_SOME_DEF: "(!x. IS_SOME (Some x) = True) & (IS_SOME None = False)"
+  by simp
+
+consts
+  OPTION_JOIN :: "'a option option => 'a option"
+
+primrec OPTION_JOIN_def:
+  "OPTION_JOIN None = None"
+  "OPTION_JOIN (Some x) = x"
+
+lemma OPTION_JOIN_DEF: "(OPTION_JOIN None = None) & (ALL x. OPTION_JOIN (Some x) = x)"
+  by simp;
+
+lemma PAIR: "(fst x,snd x) = x"
+  by simp
+
+lemma PAIR_MAP: "prod_fun f g p = (f (fst p),g (snd p))"
+  by (simp add: prod_fun_def split_def)
+
+lemma pair_case_def: "split = split"
+  ..;
+
+lemma LESS_OR_EQ: "m <= (n::nat) = (m < n | m = n)"
+  by auto
+
+constdefs
+  nat_gt :: "nat => nat => bool"
+  "nat_gt == %m n. n < m"
+  nat_ge :: "nat => nat => bool"
+  "nat_ge == %m n. nat_gt m n | m = n"
+
+lemma [hol4rew]: "nat_gt m n = (n < m)"
+  by (simp add: nat_gt_def)
+
+lemma [hol4rew]: "nat_ge m n = (n <= m)"
+  by (auto simp add: nat_ge_def nat_gt_def)
+
+lemma GREATER_DEF: "ALL m n. (n < m) = (n < m)"
+  by simp
+
+lemma GREATER_OR_EQ: "ALL m n. n <= (m::nat) = (n < m | m = n)"
+  by auto
+
+lemma LESS_DEF: "m < n = (? P. (!n. P (Suc n) --> P n) & P m & ~P n)"
+proof safe
+  assume "m < n"
+  def P == "%n. n <= m"
+  have "(!n. P (Suc n) \<longrightarrow> P n) & P m & ~P n"
+  proof (auto simp add: P_def)
+    assume "n <= m"
+    from prems
+    show False
+      by auto
+  qed
+  thus "? P. (!n. P (Suc n) \<longrightarrow> P n) & P m & ~P n"
+    by auto
+next
+  fix P
+  assume alln: "!n. P (Suc n) \<longrightarrow> P n"
+  assume pm: "P m"
+  assume npn: "~P n"
+  have "!k q. q + k = m \<longrightarrow> P q"
+  proof
+    fix k
+    show "!q. q + k = m \<longrightarrow> P q"
+    proof (induct k,simp_all)
+      show "P m" .
+    next
+      fix k
+      assume ind: "!q. q + k = m \<longrightarrow> P q"
+      show "!q. Suc (q + k) = m \<longrightarrow> P q"
+      proof (rule+)
+	fix q
+	assume "Suc (q + k) = m"
+	hence "(Suc q) + k = m"
+	  by simp
+	with ind
+	have psq: "P (Suc q)"
+	  by simp
+	from alln
+	have "P (Suc q) --> P q"
+	  ..
+	with psq
+	show "P q"
+	  by simp
+      qed
+    qed
+  qed
+  hence "!q. q + (m - n) = m \<longrightarrow> P q"
+    ..
+  hence hehe: "n + (m - n) = m \<longrightarrow> P n"
+    ..
+  show "m < n"
+  proof (rule classical)
+    assume "~(m<n)"
+    hence "n <= m"
+      by simp
+    with hehe
+    have "P n"
+      by simp
+    with npn
+    show "m < n"
+      ..
+  qed
+qed;
+
+constdefs
+  FUNPOW :: "('a => 'a) => nat => 'a => 'a"
+  "FUNPOW f n == f ^ n"
+
+lemma FUNPOW: "(ALL f x. (f ^ 0) x = x) &
+  (ALL f n x. (f ^ Suc n) x = (f ^ n) (f x))"
+proof auto
+  fix f n x
+  have "ALL x. f ((f ^ n) x) = (f ^ n) (f x)"
+    by (induct n,auto)
+  thus "f ((f ^ n) x) = (f ^ n) (f x)"
+    ..
+qed
+
+lemma [hol4rew]: "FUNPOW f n = f ^ n"
+  by (simp add: FUNPOW_def)
+
+lemma ADD: "(!n. (0::nat) + n = n) & (!m n. Suc m + n = Suc (m + n))"
+  by simp
+
+lemma MULT: "(!n. (0::nat) * n = 0) & (!m n. Suc m * n = m * n + n)"
+  by simp
+
+lemma SUB: "(!m. (0::nat) - m = 0) & (!m n. (Suc m) - n = (if m < n then 0 else Suc (m - n)))"
+  apply simp
+  apply arith
+  done
+
+lemma MAX_DEF: "max (m::nat) n = (if m < n then n else m)"
+  by (simp add: max_def)
+
+lemma MIN_DEF: "min (m::nat) n = (if m < n then m else n)"
+  by (simp add: min_def)
+
+lemma DIVISION: "(0::nat) < n --> (!k. (k = k div n * n + k mod n) & k mod n < n)"
+  by simp
+
+constdefs
+  ALT_ZERO :: nat
+  "ALT_ZERO == 0"
+  NUMERAL_BIT1 :: "nat \<Rightarrow> nat"
+  "NUMERAL_BIT1 n == n + (n + Suc 0)"
+  NUMERAL_BIT2 :: "nat \<Rightarrow> nat"
+  "NUMERAL_BIT2 n == n + (n + Suc (Suc 0))"
+  NUMERAL :: "nat \<Rightarrow> nat"
+  "NUMERAL x == x"
+
+lemma [hol4rew]: "NUMERAL ALT_ZERO = 0"
+  by (simp add: ALT_ZERO_def NUMERAL_def)
+
+lemma [hol4rew]: "NUMERAL (NUMERAL_BIT1 ALT_ZERO) = 1"
+  by (simp add: ALT_ZERO_def NUMERAL_BIT1_def NUMERAL_def)
+
+lemma [hol4rew]: "NUMERAL (NUMERAL_BIT2 ALT_ZERO) = 2"
+  by (simp add: ALT_ZERO_def NUMERAL_BIT2_def NUMERAL_def)
+
+lemma EXP: "(!m. m ^ 0 = (1::nat)) & (!m n. m ^ Suc n = m * (m::nat) ^ n)"
+  by auto
+
+lemma num_case_def: "(!b f. nat_case b f 0 = b) & (!b f n. nat_case b f (Suc n) = f n)"
+  by simp;
+
+lemma divides_def: "(a::nat) dvd b = (? q. b = q * a)"
+  by (auto simp add: dvd_def);
+
+lemma list_case_def: "(!v f. list_case v f [] = v) & (!v f a0 a1. list_case v f (a0#a1) = f a0 a1)"
+  by simp
+
+consts
+  list_size :: "('a \<Rightarrow> nat) \<Rightarrow> 'a list \<Rightarrow> nat"
+
+primrec
+  "list_size f [] = 0"
+  "list_size f (a0#a1) = 1 + (f a0 + list_size f a1)"
+
+lemma list_size_def: "(!f. list_size f [] = 0) &
+         (!f a0 a1. list_size f (a0#a1) = 1 + (f a0 + list_size f a1))"
+  by simp
+
+lemma list_case_cong: "! M M' v f. M = M' & (M' = [] \<longrightarrow>  v = v') &
+           (!a0 a1. (M' = a0#a1) \<longrightarrow> (f a0 a1 = f' a0 a1)) -->
+           (list_case v f M = list_case v' f' M')"
+proof clarify
+  fix M M' v f
+  assume "M' = [] \<longrightarrow> v = v'"
+    and "!a0 a1. M' = a0 # a1 \<longrightarrow> f a0 a1 = f' a0 a1"
+  show "list_case v f M' = list_case v' f' M'"
+  proof (rule List.list.case_cong)
+    show "M' = M'"
+      ..
+  next
+    assume "M' = []"
+    with prems
+    show "v = v'"
+      by auto
+  next
+    fix a0 a1
+    assume "M' = a0 # a1"
+    with prems
+    show "f a0 a1 = f' a0 a1"
+      by auto
+  qed
+qed
+
+lemma list_Axiom: "ALL f0 f1. EX fn. (fn [] = f0) & (ALL a0 a1. fn (a0#a1) = f1 a0 a1 (fn a1))"
+proof safe
+  fix f0 f1
+  def fn == "list_rec f0 f1"
+  have "fn [] = f0 & (ALL a0 a1. fn (a0 # a1) = f1 a0 a1 (fn a1))"
+    by (simp add: fn_def)
+  thus "EX fn. fn [] = f0 & (ALL a0 a1. fn (a0 # a1) = f1 a0 a1 (fn a1))"
+    by auto
+qed
+
+lemma list_Axiom_old: "EX! fn. (fn [] = x) & (ALL h t. fn (h#t) = f (fn t) h t)"
+proof safe
+  def fn == "list_rec x (%h t r. f r h t)"
+  have "fn [] = x & (ALL h t. fn (h # t) = f (fn t) h t)"
+    by (simp add: fn_def)
+  thus "EX fn. fn [] = x & (ALL h t. fn (h # t) = f (fn t) h t)"
+    by auto
+next
+  fix fn1 fn2
+  assume "ALL h t. fn1 (h # t) = f (fn1 t) h t"
+  assume "ALL h t. fn2 (h # t) = f (fn2 t) h t"
+  assume "fn2 [] = fn1 []"
+  show "fn1 = fn2"
+  proof
+    fix xs
+    show "fn1 xs = fn2 xs"
+      by (induct xs,simp_all add: prems) 
+  qed
+qed
+
+lemma NULL_DEF: "(null [] = True) & (!h t. null (h # t) = False)"
+  by simp
+
+constdefs
+  sum :: "nat list \<Rightarrow> nat"
+  "sum l == foldr (op +) l 0"
+
+lemma SUM: "(sum [] = 0) & (!h t. sum (h#t) = h + sum t)"
+  by (simp add: sum_def)
+
+lemma APPEND: "(!l. [] @ l = l) & (!l1 l2 h. (h#l1) @ l2 = h# l1 @ l2)"
+  by simp
+
+lemma FLAT: "(concat [] = []) & (!h t. concat (h#t) = h @ (concat t))"
+  by simp
+
+lemma LENGTH: "(length [] = 0) & (!h t. length (h#t) = Suc (length t))"
+  by simp
+
+lemma MAP: "(!f. map f [] = []) & (!f h t. map f (h#t) = f h#map f t)"
+  by simp
+
+lemma MEM: "(!x. x mem [] = False) & (!x h t. x mem (h#t) = ((x = h) | x mem t))"
+  by auto
+
+lemma FILTER: "(!P. filter P [] = []) & (!P h t.
+           filter P (h#t) = (if P h then h#filter P t else filter P t))"
+  by simp
+
+lemma REPLICATE: "(ALL x. replicate 0 x = []) &
+  (ALL n x. replicate (Suc n) x = x # replicate n x)"
+  by simp
+
+constdefs
+  FOLDR :: "[['a,'b]\<Rightarrow>'b,'b,'a list] \<Rightarrow> 'b"
+  "FOLDR f e l == foldr f l e"
+
+lemma [hol4rew]: "FOLDR f e l = foldr f l e"
+  by (simp add: FOLDR_def)
+
+lemma FOLDR: "(!f e. foldr f [] e = e) & (!f e x l. foldr f (x#l) e = f x (foldr f l e))"
+  by simp
+
+lemma FOLDL: "(!f e. foldl f e [] = e) & (!f e x l. foldl f e (x#l) = foldl f (f e x) l)"
+  by simp
+
+lemma EVERY_DEF: "(!P. list_all P [] = True) & (!P h t. list_all P (h#t) = (P h & list_all P t))"
+  by simp
+
+consts
+  list_exists :: "['a \<Rightarrow> bool,'a list] \<Rightarrow> bool"
+
+primrec
+  list_exists_Nil: "list_exists P Nil = False"
+  list_exists_Cons: "list_exists P (x#xs) = (if P x then True else list_exists P xs)"
+
+lemma list_exists_DEF: "(!P. list_exists P [] = False) &
+         (!P h t. list_exists P (h#t) = (P h | list_exists P t))"
+  by simp
+
+consts
+  map2 :: "[['a,'b]\<Rightarrow>'c,'a list,'b list] \<Rightarrow> 'c list"
+
+primrec
+  map2_Nil: "map2 f [] l2 = []"
+  map2_Cons: "map2 f (x#xs) l2 = f x (hd l2) # map2 f xs (tl l2)"
+
+lemma MAP2: "(!f. map2 f [] [] = []) & (!f h1 t1 h2 t2. map2 f (h1#t1) (h2#t2) = f h1 h2#map2 f t1 t2)"
+  by simp
+
+lemma list_INDUCT: "\<lbrakk> P [] ; !t. P t \<longrightarrow> (!h. P (h#t)) \<rbrakk> \<Longrightarrow> !l. P l"
+proof
+  fix l
+  assume "P []"
+  assume allt: "!t. P t \<longrightarrow> (!h. P (h # t))"
+  show "P l"
+  proof (induct l)
+    show "P []" .
+  next
+    fix h t
+    assume "P t"
+    with allt
+    have "!h. P (h # t)"
+      by auto
+    thus "P (h # t)"
+      ..
+  qed
+qed
+
+lemma list_CASES: "(l = []) | (? t h. l = h#t)"
+  by (induct l,auto)
+
+constdefs
+  ZIP :: "'a list * 'b list \<Rightarrow> ('a * 'b) list"
+  "ZIP == %(a,b). zip a b"
+
+lemma ZIP: "(zip [] [] = []) &
+  (!x1 l1 x2 l2. zip (x1#l1) (x2#l2) = (x1,x2)#zip l1 l2)"
+  by simp
+
+lemma [hol4rew]: "ZIP (a,b) = zip a b"
+  by (simp add: ZIP_def)
+
+consts
+  unzip :: "('a * 'b) list \<Rightarrow> 'a list * 'b list"
+
+primrec
+  unzip_Nil: "unzip [] = ([],[])"
+  unzip_Cons: "unzip (xy#xys) = (let zs = unzip xys in (fst xy # fst zs,snd xy # snd zs))"
+
+lemma UNZIP: "(unzip [] = ([],[])) &
+         (!x l. unzip (x#l) = (fst x#fst (unzip l),snd x#snd (unzip l)))"
+  by (simp add: Let_def)
+
+lemma REVERSE: "(rev [] = []) & (!h t. rev (h#t) = (rev t) @ [h])"
+  by simp;
+
+lemma REAL_SUP_ALLPOS: "\<lbrakk> ALL x. P (x::real) \<longrightarrow> 0 < x ; EX x. P x; EX z. ALL x. P x \<longrightarrow> x < z \<rbrakk> \<Longrightarrow> EX s. ALL y. (EX x. P x & y < x) = (y < s)"
+proof safe
+  fix x z
+  assume allx: "ALL x. P x \<longrightarrow> 0 < x"
+  assume px: "P x"
+  assume allx': "ALL x. P x \<longrightarrow> x < z"
+  have "EX s. ALL y. (EX x : Collect P. y < x) = (y < s)"
+  proof (rule posreal_complete)
+    show "ALL x : Collect P. 0 < x"
+    proof safe
+      fix x
+      assume "P x"
+      from allx
+      have "P x \<longrightarrow> 0 < x"
+	..
+      thus "0 < x"
+	by (simp add: prems)
+    qed
+  next
+    from px
+    show "EX x. x : Collect P"
+      by auto
+  next
+    from allx'
+    show "EX y. ALL x : Collect P. x < y"
+      apply simp
+      ..
+  qed
+  thus "EX s. ALL y. (EX x. P x & y < x) = (y < s)"
+    by simp
+qed
+
+lemma REAL_10: "~((1::real) = 0)"
+  by simp
+
+lemma REAL_ADD_ASSOC: "(x::real) + (y + z) = x + y + z"
+  by simp
+
+lemma REAL_MUL_ASSOC: "(x::real) * (y * z) = x * y * z"
+  by simp
+
+lemma REAL_ADD_LINV:  "-x + x = (0::real)"
+  by simp
+
+lemma REAL_MUL_LINV: "x ~= (0::real) ==> inverse x * x = 1"
+  by simp
+
+lemma REAL_LT_TOTAL: "((x::real) = y) | x < y | y < x"
+  by auto;
+
+lemma [hol4rew]: "real (0::nat) = 0"
+  by simp
+
+lemma [hol4rew]: "real (1::nat) = 1"
+  by simp
+
+lemma [hol4rew]: "real (2::nat) = 2"
+  by simp
+
+lemma real_lte: "((x::real) <= y) = (~(y < x))"
+  by auto
+
+lemma real_of_num: "((0::real) = 0) & (!n. real (Suc n) = real n + 1)"
+  by (simp add: real_of_nat_Suc)
+
+lemma abs: "abs (x::real) = (if 0 <= x then x else -x)"
+  by (simp add: real_abs_def)
+
+lemma pow: "(!x::real. x ^ 0 = 1) & (!x::real. ALL n. x ^ (Suc n) = x * x ^ n)"
+  by simp;
+
+constdefs
+  real_gt :: "real => real => bool" 
+  "real_gt == %x y. y < x"
+
+lemma [hol4rew]: "real_gt x y = (y < x)"
+  by (simp add: real_gt_def)
+
+lemma real_gt: "ALL x (y::real). (y < x) = (y < x)"
+  by simp
+
+constdefs
+  real_ge :: "real => real => bool"
+  "real_ge x y == y <= x"
+
+lemma [hol4rew]: "real_ge x y = (y <= x)"
+  by (simp add: real_ge_def)
+
+lemma real_ge: "ALL x y. (y <= x) = (y <= x)"
+  by simp
+
+end