src/HOL/RealDef.thy
changeset 36414 a19ba9bbc8dc
parent 36409 d323e7773aa8
child 36776 c137ae7673d3
--- a/src/HOL/RealDef.thy	Tue Apr 27 08:18:25 2010 +0200
+++ b/src/HOL/RealDef.thy	Tue Apr 27 09:49:36 2010 +0200
@@ -266,17 +266,17 @@
 
 subsection{*The Real Numbers form a Field*}
 
-lemma INVERSE_ZERO: "inverse 0 = (0::real)"
-by (simp add: real_inverse_def)
-
 instance real :: field_inverse_zero
 proof
   fix x y z :: real
   show "x \<noteq> 0 ==> inverse x * x = 1" by (rule real_mult_inverse_left)
   show "x / y = x * inverse y" by (simp add: real_divide_def)
-  show "inverse 0 = (0::real)" by (fact INVERSE_ZERO)
+  show "inverse 0 = (0::real)" by (simp add: real_inverse_def)
 qed
 
+lemma INVERSE_ZERO: "inverse 0 = (0::real)"
+  by (fact inverse_zero)
+
 
 subsection{*The @{text "\<le>"} Ordering*}
 
@@ -409,7 +409,7 @@
 
 subsection{*The Reals Form an Ordered Field*}
 
-instance real :: linordered_field
+instance real :: linordered_field_inverse_zero
 proof
   fix x y z :: real
   show "x \<le> y ==> z + x \<le> z + y" by (rule real_add_left_mono)
@@ -419,9 +419,6 @@
     by (simp only: real_sgn_def)
 qed
 
-instance real :: linordered_field_inverse_zero proof
-qed (fact INVERSE_ZERO)
-
 text{*The function @{term real_of_preal} requires many proofs, but it seems
 to be essential for proving completeness of the reals from that of the
 positive reals.*}