src/HOL/Hahn_Banach/Subspace.thy
changeset 61539 a29295dac1ca
parent 61486 3590367b0ce9
child 61540 f92bf6674699
--- a/src/HOL/Hahn_Banach/Subspace.thy	Mon Nov 02 10:38:42 2015 +0100
+++ b/src/HOL/Hahn_Banach/Subspace.thy	Mon Nov 02 11:10:28 2015 +0100
@@ -11,8 +11,8 @@
 subsection \<open>Definition\<close>
 
 text \<open>
-  A non-empty subset @{text U} of a vector space @{text V} is a
-  \<^emph>\<open>subspace\<close> of @{text V}, iff @{text U} is closed under addition
+  A non-empty subset \<open>U\<close> of a vector space \<open>V\<close> is a
+  \<^emph>\<open>subspace\<close> of \<open>V\<close>, iff \<open>U\<close> is closed under addition
   and scalar multiplication.
 \<close>
 
@@ -140,8 +140,8 @@
 subsection \<open>Linear closure\<close>
 
 text \<open>
-  The \<^emph>\<open>linear closure\<close> of a vector @{text x} is the set of all
-  scalar multiples of @{text x}.
+  The \<^emph>\<open>linear closure\<close> of a vector \<open>x\<close> is the set of all
+  scalar multiples of \<open>x\<close>.
 \<close>
 
 definition lin :: "('a::{minus,plus,zero}) \<Rightarrow> 'a set"
@@ -227,8 +227,8 @@
 subsection \<open>Sum of two vectorspaces\<close>
 
 text \<open>
-  The \<^emph>\<open>sum\<close> of two vectorspaces @{text U} and @{text V} is the
-  set of all sums of elements from @{text U} and @{text V}.
+  The \<^emph>\<open>sum\<close> of two vectorspaces \<open>U\<close> and \<open>V\<close> is the
+  set of all sums of elements from \<open>U\<close> and \<open>V\<close>.
 \<close>
 
 lemma sum_def: "U + V = {u + v | u v. u \<in> U \<and> v \<in> V}"
@@ -246,7 +246,7 @@
     "u \<in> U \<Longrightarrow> v \<in> V \<Longrightarrow> u + v \<in> U + V"
   unfolding sum_def by blast
 
-text \<open>@{text U} is a subspace of @{text "U + V"}.\<close>
+text \<open>\<open>U\<close> is a subspace of \<open>U + V\<close>.\<close>
 
 lemma subspace_sum1 [iff]:
   assumes "vectorspace U" "vectorspace V"
@@ -329,11 +329,10 @@
 subsection \<open>Direct sums\<close>
 
 text \<open>
-  The sum of @{text U} and @{text V} is called \<^emph>\<open>direct\<close>, iff the
-  zero element is the only common element of @{text U} and @{text
-  V}. For every element @{text x} of the direct sum of @{text U} and
-  @{text V} the decomposition in @{text "x = u + v"} with
-  @{text "u \<in> U"} and @{text "v \<in> V"} is unique.
+  The sum of \<open>U\<close> and \<open>V\<close> is called \<^emph>\<open>direct\<close>, iff the
+  zero element is the only common element of \<open>U\<close> and \<open>V\<close>. For every element \<open>x\<close> of the direct sum of \<open>U\<close> and
+  \<open>V\<close> the decomposition in \<open>x = u + v\<close> with
+  \<open>u \<in> U\<close> and \<open>v \<in> V\<close> is unique.
 \<close>
 
 lemma decomp:
@@ -380,9 +379,9 @@
 text \<open>
   An application of the previous lemma will be used in the proof of
   the Hahn-Banach Theorem (see page \pageref{decomp-H-use}): for any
-  element @{text "y + a \<cdot> x\<^sub>0"} of the direct sum of a
-  vectorspace @{text H} and the linear closure of @{text "x\<^sub>0"}
-  the components @{text "y \<in> H"} and @{text a} are uniquely
+  element \<open>y + a \<cdot> x\<^sub>0\<close> of the direct sum of a
+  vectorspace \<open>H\<close> and the linear closure of \<open>x\<^sub>0\<close>
+  the components \<open>y \<in> H\<close> and \<open>a\<close> are uniquely
   determined.
 \<close>
 
@@ -437,10 +436,10 @@
 qed
 
 text \<open>
-  Since for any element @{text "y + a \<cdot> x'"} of the direct sum of a
-  vectorspace @{text H} and the linear closure of @{text x'} the
-  components @{text "y \<in> H"} and @{text a} are unique, it follows from
-  @{text "y \<in> H"} that @{text "a = 0"}.
+  Since for any element \<open>y + a \<cdot> x'\<close> of the direct sum of a
+  vectorspace \<open>H\<close> and the linear closure of \<open>x'\<close> the
+  components \<open>y \<in> H\<close> and \<open>a\<close> are unique, it follows from
+  \<open>y \<in> H\<close> that \<open>a = 0\<close>.
 \<close>
 
 lemma decomp_H'_H:
@@ -465,9 +464,9 @@
 qed
 
 text \<open>
-  The components @{text "y \<in> H"} and @{text a} in @{text "y + a \<cdot> x'"}
-  are unique, so the function @{text h'} defined by
-  @{text "h' (y + a \<cdot> x') = h y + a \<cdot> \<xi>"} is definite.
+  The components \<open>y \<in> H\<close> and \<open>a\<close> in \<open>y + a \<cdot> x'\<close>
+  are unique, so the function \<open>h'\<close> defined by
+  \<open>h' (y + a \<cdot> x') = h y + a \<cdot> \<xi>\<close> is definite.
 \<close>
 
 lemma h'_definite: