--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Tools/Domain/domain_take_proofs.ML Tue Mar 02 13:50:23 2010 -0800
@@ -0,0 +1,391 @@
+(* Title: HOLCF/Tools/domain/domain_take_proofs.ML
+ Author: Brian Huffman
+
+Defines take functions for the given domain equation
+and proves related theorems.
+*)
+
+signature DOMAIN_TAKE_PROOFS =
+sig
+ type iso_info =
+ {
+ absT : typ,
+ repT : typ,
+ abs_const : term,
+ rep_const : term,
+ abs_inverse : thm,
+ rep_inverse : thm
+ }
+
+ val define_take_functions :
+ (binding * iso_info) list -> theory ->
+ { take_consts : term list,
+ take_defs : thm list,
+ chain_take_thms : thm list,
+ take_0_thms : thm list,
+ take_Suc_thms : thm list,
+ deflation_take_thms : thm list
+ } * theory
+
+ val map_of_typ :
+ theory -> (typ * term) list -> typ -> term
+
+ val add_map_function :
+ (string * string * thm) -> theory -> theory
+
+ val get_map_tab : theory -> string Symtab.table
+ val get_deflation_thms : theory -> thm list
+end;
+
+structure Domain_Take_Proofs : DOMAIN_TAKE_PROOFS =
+struct
+
+type iso_info =
+ {
+ absT : typ,
+ repT : typ,
+ abs_const : term,
+ rep_const : term,
+ abs_inverse : thm,
+ rep_inverse : thm
+ };
+
+val beta_ss =
+ HOL_basic_ss
+ addsimps simp_thms
+ addsimps [@{thm beta_cfun}]
+ addsimprocs [@{simproc cont_proc}];
+
+val beta_tac = simp_tac beta_ss;
+
+(******************************************************************************)
+(******************************** theory data *********************************)
+(******************************************************************************)
+
+structure MapData = Theory_Data
+(
+ (* constant names like "foo_map" *)
+ type T = string Symtab.table;
+ val empty = Symtab.empty;
+ val extend = I;
+ fun merge data = Symtab.merge (K true) data;
+);
+
+structure DeflMapData = Theory_Data
+(
+ (* theorems like "deflation a ==> deflation (foo_map$a)" *)
+ type T = thm list;
+ val empty = [];
+ val extend = I;
+ val merge = Thm.merge_thms;
+);
+
+fun add_map_function (tname, map_name, deflation_map_thm) =
+ MapData.map (Symtab.insert (K true) (tname, map_name))
+ #> DeflMapData.map (Thm.add_thm deflation_map_thm);
+
+val get_map_tab = MapData.get;
+val get_deflation_thms = DeflMapData.get;
+
+(******************************************************************************)
+(************************** building types and terms **************************)
+(******************************************************************************)
+
+open HOLCF_Library;
+
+infixr 6 ->>;
+infix -->>;
+
+val deflT = @{typ "udom alg_defl"};
+
+fun mapT (T as Type (_, Ts)) =
+ (map (fn T => T ->> T) Ts) -->> (T ->> T)
+ | mapT T = T ->> T;
+
+fun mk_Rep_of T =
+ Const (@{const_name Rep_of}, Term.itselfT T --> deflT) $ Logic.mk_type T;
+
+fun coerce_const T = Const (@{const_name coerce}, T);
+
+fun isodefl_const T =
+ Const (@{const_name isodefl}, (T ->> T) --> deflT --> HOLogic.boolT);
+
+fun mk_deflation t =
+ Const (@{const_name deflation}, Term.fastype_of t --> boolT) $ t;
+
+fun mk_lub t =
+ let
+ val T = Term.range_type (Term.fastype_of t);
+ val lub_const = Const (@{const_name lub}, (T --> boolT) --> T);
+ val UNIV_const = @{term "UNIV :: nat set"};
+ val image_type = (natT --> T) --> (natT --> boolT) --> T --> boolT;
+ val image_const = Const (@{const_name image}, image_type);
+ in
+ lub_const $ (image_const $ t $ UNIV_const)
+ end;
+
+(* splits a cterm into the right and lefthand sides of equality *)
+fun dest_eqs t = HOLogic.dest_eq (HOLogic.dest_Trueprop t);
+
+fun mk_eqs (t, u) = HOLogic.mk_Trueprop (HOLogic.mk_eq (t, u));
+
+(******************************************************************************)
+(****************************** isomorphism info ******************************)
+(******************************************************************************)
+
+fun deflation_abs_rep (info : iso_info) : thm =
+ let
+ val abs_iso = #abs_inverse info;
+ val rep_iso = #rep_inverse info;
+ val thm = @{thm deflation_abs_rep} OF [abs_iso, rep_iso];
+ in
+ Drule.export_without_context thm
+ end
+
+(******************************************************************************)
+(********************* building map functions over types **********************)
+(******************************************************************************)
+
+fun map_of_typ (thy : theory) (sub : (typ * term) list) (T : typ) : term =
+ let
+ val map_tab = get_map_tab thy;
+ fun auto T = T ->> T;
+ fun map_of T =
+ case AList.lookup (op =) sub T of
+ SOME m => (m, true) | NONE => map_of' T
+ and map_of' (T as (Type (c, Ts))) =
+ (case Symtab.lookup map_tab c of
+ SOME map_name =>
+ let
+ val map_type = map auto Ts -->> auto T;
+ val (ms, bs) = map_split map_of Ts;
+ in
+ if exists I bs
+ then (list_ccomb (Const (map_name, map_type), ms), true)
+ else (mk_ID T, false)
+ end
+ | NONE => (mk_ID T, false))
+ | map_of' T = (mk_ID T, false);
+ in
+ fst (map_of T)
+ end;
+
+
+(******************************************************************************)
+(********************* declaring definitions and theorems *********************)
+(******************************************************************************)
+
+fun define_const
+ (bind : binding, rhs : term)
+ (thy : theory)
+ : (term * thm) * theory =
+ let
+ val typ = Term.fastype_of rhs;
+ val (const, thy) = Sign.declare_const ((bind, typ), NoSyn) thy;
+ val eqn = Logic.mk_equals (const, rhs);
+ val def = Thm.no_attributes (Binding.suffix_name "_def" bind, eqn);
+ val (def_thm, thy) = yield_singleton (PureThy.add_defs false) def thy;
+ in
+ ((const, def_thm), thy)
+ end;
+
+fun add_qualified_thm name (path, thm) thy =
+ thy
+ |> Sign.add_path path
+ |> yield_singleton PureThy.add_thms
+ (Thm.no_attributes (Binding.name name, thm))
+ ||> Sign.parent_path;
+
+(******************************************************************************)
+(************************** defining take functions ***************************)
+(******************************************************************************)
+
+fun define_take_functions
+ (spec : (binding * iso_info) list)
+ (thy : theory) =
+ let
+
+ (* retrieve components of spec *)
+ val dom_binds = map fst spec;
+ val iso_infos = map snd spec;
+ val dom_eqns = map (fn x => (#absT x, #repT x)) iso_infos;
+ val rep_abs_consts = map (fn x => (#rep_const x, #abs_const x)) iso_infos;
+ val dnames = map Binding.name_of dom_binds;
+
+ (* get table of map functions *)
+ val map_tab = MapData.get thy;
+
+ fun mk_projs [] t = []
+ | mk_projs (x::[]) t = [(x, t)]
+ | mk_projs (x::xs) t = (x, mk_fst t) :: mk_projs xs (mk_snd t);
+
+ fun mk_cfcomp2 ((rep_const, abs_const), f) =
+ mk_cfcomp (abs_const, mk_cfcomp (f, rep_const));
+
+ (* define take functional *)
+ val newTs : typ list = map fst dom_eqns;
+ val copy_arg_type = mk_tupleT (map (fn T => T ->> T) newTs);
+ val copy_arg = Free ("f", copy_arg_type);
+ val copy_args = map snd (mk_projs dom_binds copy_arg);
+ fun one_copy_rhs (rep_abs, (lhsT, rhsT)) =
+ let
+ val body = map_of_typ thy (newTs ~~ copy_args) rhsT;
+ in
+ mk_cfcomp2 (rep_abs, body)
+ end;
+ val take_functional =
+ big_lambda copy_arg
+ (mk_tuple (map one_copy_rhs (rep_abs_consts ~~ dom_eqns)));
+ val take_rhss =
+ let
+ val i = Free ("i", HOLogic.natT);
+ val rhs = mk_iterate (i, take_functional)
+ in
+ map (Term.lambda i o snd) (mk_projs dom_binds rhs)
+ end;
+
+ (* define take constants *)
+ fun define_take_const ((tbind, take_rhs), (lhsT, rhsT)) thy =
+ let
+ val take_type = HOLogic.natT --> lhsT ->> lhsT;
+ val take_bind = Binding.suffix_name "_take" tbind;
+ val (take_const, thy) =
+ Sign.declare_const ((take_bind, take_type), NoSyn) thy;
+ val take_eqn = Logic.mk_equals (take_const, take_rhs);
+ val (take_def_thm, thy) =
+ thy
+ |> Sign.add_path (Binding.name_of tbind)
+ |> yield_singleton
+ (PureThy.add_defs false o map Thm.no_attributes)
+ (Binding.name "take_def", take_eqn)
+ ||> Sign.parent_path;
+ in ((take_const, take_def_thm), thy) end;
+ val ((take_consts, take_defs), thy) = thy
+ |> fold_map define_take_const (dom_binds ~~ take_rhss ~~ dom_eqns)
+ |>> ListPair.unzip;
+
+ (* prove chain_take lemmas *)
+ fun prove_chain_take (take_const, dname) thy =
+ let
+ val goal = mk_trp (mk_chain take_const);
+ val rules = take_defs @ @{thms chain_iterate ch2ch_fst ch2ch_snd};
+ val tac = simp_tac (HOL_basic_ss addsimps rules) 1;
+ val chain_take_thm = Goal.prove_global thy [] [] goal (K tac);
+ in
+ add_qualified_thm "chain_take" (dname, chain_take_thm) thy
+ end;
+ val (chain_take_thms, thy) =
+ fold_map prove_chain_take (take_consts ~~ dnames) thy;
+
+ (* prove take_0 lemmas *)
+ fun prove_take_0 ((take_const, dname), (lhsT, rhsT)) thy =
+ let
+ val lhs = take_const $ @{term "0::nat"};
+ val goal = mk_eqs (lhs, mk_bottom (lhsT ->> lhsT));
+ val rules = take_defs @ @{thms iterate_0 fst_strict snd_strict};
+ val tac = simp_tac (HOL_basic_ss addsimps rules) 1;
+ val take_0_thm = Goal.prove_global thy [] [] goal (K tac);
+ in
+ add_qualified_thm "take_0" (dname, take_0_thm) thy
+ end;
+ val (take_0_thms, thy) =
+ fold_map prove_take_0 (take_consts ~~ dnames ~~ dom_eqns) thy;
+
+ (* prove take_Suc lemmas *)
+ val i = Free ("i", natT);
+ val take_is = map (fn t => t $ i) take_consts;
+ fun prove_take_Suc
+ (((take_const, rep_abs), dname), (lhsT, rhsT)) thy =
+ let
+ val lhs = take_const $ (@{term Suc} $ i);
+ val body = map_of_typ thy (newTs ~~ take_is) rhsT;
+ val rhs = mk_cfcomp2 (rep_abs, body);
+ val goal = mk_eqs (lhs, rhs);
+ val simps = @{thms iterate_Suc fst_conv snd_conv}
+ val rules = take_defs @ simps;
+ val tac = simp_tac (beta_ss addsimps rules) 1;
+ val take_Suc_thm = Goal.prove_global thy [] [] goal (K tac);
+ in
+ add_qualified_thm "take_Suc" (dname, take_Suc_thm) thy
+ end;
+ val (take_Suc_thms, thy) =
+ fold_map prove_take_Suc
+ (take_consts ~~ rep_abs_consts ~~ dnames ~~ dom_eqns) thy;
+
+ (* prove deflation theorems for take functions *)
+ val deflation_abs_rep_thms = map deflation_abs_rep iso_infos;
+ val deflation_take_thm =
+ let
+ val i = Free ("i", natT);
+ fun mk_goal take_const = mk_deflation (take_const $ i);
+ val goal = mk_trp (foldr1 mk_conj (map mk_goal take_consts));
+ val adm_rules =
+ @{thms adm_conj adm_subst [OF _ adm_deflation]
+ cont2cont_fst cont2cont_snd cont_id};
+ val bottom_rules =
+ take_0_thms @ @{thms deflation_UU simp_thms};
+ val deflation_rules =
+ @{thms conjI deflation_ID}
+ @ deflation_abs_rep_thms
+ @ DeflMapData.get thy;
+ in
+ Goal.prove_global thy [] [] goal (fn _ =>
+ EVERY
+ [rtac @{thm nat.induct} 1,
+ simp_tac (HOL_basic_ss addsimps bottom_rules) 1,
+ asm_simp_tac (HOL_basic_ss addsimps take_Suc_thms) 1,
+ REPEAT (etac @{thm conjE} 1
+ ORELSE resolve_tac deflation_rules 1
+ ORELSE atac 1)])
+ end;
+ fun conjuncts [] thm = []
+ | conjuncts (n::[]) thm = [(n, thm)]
+ | conjuncts (n::ns) thm = let
+ val thmL = thm RS @{thm conjunct1};
+ val thmR = thm RS @{thm conjunct2};
+ in (n, thmL):: conjuncts ns thmR end;
+ val (deflation_take_thms, thy) =
+ fold_map (add_qualified_thm "deflation_take")
+ (map (apsnd Drule.export_without_context)
+ (conjuncts dnames deflation_take_thm)) thy;
+
+ (* prove strictness of take functions *)
+ fun prove_take_strict (take_const, dname) thy =
+ let
+ val goal = mk_trp (mk_strict (take_const $ Free ("i", natT)));
+ val tac = rtac @{thm deflation_strict} 1
+ THEN resolve_tac deflation_take_thms 1;
+ val take_strict_thm = Goal.prove_global thy [] [] goal (K tac);
+ in
+ add_qualified_thm "take_strict" (dname, take_strict_thm) thy
+ end;
+ val (take_strict_thms, thy) =
+ fold_map prove_take_strict (take_consts ~~ dnames) thy;
+
+ (* prove take/take rules *)
+ fun prove_take_take ((chain_take, deflation_take), dname) thy =
+ let
+ val take_take_thm =
+ @{thm deflation_chain_min} OF [chain_take, deflation_take];
+ in
+ add_qualified_thm "take_take" (dname, take_take_thm) thy
+ end;
+ val (take_take_thms, thy) =
+ fold_map prove_take_take
+ (chain_take_thms ~~ deflation_take_thms ~~ dnames) thy;
+
+ val result =
+ {
+ take_consts = take_consts,
+ take_defs = take_defs,
+ chain_take_thms = chain_take_thms,
+ take_0_thms = take_0_thms,
+ take_Suc_thms = take_Suc_thms,
+ deflation_take_thms = deflation_take_thms
+ };
+
+ in
+ (result, thy)
+ end;
+
+end;