src/HOL/Real/Real.thy
changeset 5588 a3ab526bb891
parent 5078 7b5ea59c0275
child 7077 60b098bb8b8a
--- a/src/HOL/Real/Real.thy	Tue Sep 29 18:13:05 1998 +0200
+++ b/src/HOL/Real/Real.thy	Thu Oct 01 18:18:01 1998 +0200
@@ -1,61 +1,14 @@
-(*  Title       : Real.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Description : The reals
-*) 
-
-Real = PReal +
-
-constdefs
-    realrel   ::  "((preal * preal) * (preal * preal)) set"
-    "realrel  ==  {p. ? x1 y1 x2 y2. p=((x1::preal,y1),(x2,y2)) & x1+y2 = x2+y1}" 
-
-typedef real = "{x::(preal*preal).True}/realrel"          (Equiv.quotient_def)
-
-
-instance
-   real  :: {ord,plus,times}
-
-consts 
-
-  "0r"       :: real               ("0r")   
-  "1r"       :: real               ("1r")  
-
-defs
-
-  real_zero_def      "0r == Abs_real(realrel^^{(@#($#1p),@#($#1p))})"
-  real_one_def       "1r == Abs_real(realrel^^{(@#($#1p) + @#($#1p),@#($#1p))})"
-
-constdefs
+(*  Title:      Real/Real.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1998  University of Cambridge
 
-  real_preal :: preal => real              ("%#_" [80] 80)
-  "%# m     == Abs_real(realrel^^{(m+@#($#1p),@#($#1p))})"
-
-  real_minus :: real => real               ("%~ _" [80] 80) 
-  "%~ R     ==  Abs_real(UN p:Rep_real(R). split (%x y. realrel^^{(y,x)}) p)"
-
-  rinv       :: real => real
-  "rinv(R)   == (@S. R ~= 0r & S*R = 1r)"
-
-  real_nat :: nat => real                  ("%%# _" [80] 80) 
-  "%%# n      == %#(@#($#(*# n)))"
-
-defs
+Type "real" is a linear order
+*)
 
-  real_add_def  
-  "P + Q == Abs_real(UN p1:Rep_real(P). UN p2:Rep_real(Q).
-                split(%x1 y1. split(%x2 y2. realrel^^{(x1+x2, y1+y2)}) p2) p1)"
-  
-  real_mult_def  
-  "P * Q == Abs_real(UN p1:Rep_real(P). UN p2:Rep_real(Q).
-                split(%x1 y1. split(%x2 y2. realrel^^{(x1*x2+y1*y2,x1*y2+x2*y1)}) p2) p1)"
+Real = RealDef +
 
-  real_less_def
-  "P < (Q::real) == EX x1 y1 x2 y2. x1 + y2 < x2 + y1 & 
-                                   (x1,y1::preal):Rep_real(P) &
-                                   (x2,y2):Rep_real(Q)" 
-
-  real_le_def
-  "P <= (Q::real) == ~(Q < P)"
+instance real :: order (real_le_refl,real_le_trans,real_le_anti_sym,real_less_le)
+instance real :: linorder (real_le_linear)
 
 end