--- a/src/HOL/Orderings.thy Tue Jul 05 09:44:38 2022 +0200
+++ b/src/HOL/Orderings.thy Sat Jun 25 13:21:27 2022 +0200
@@ -1063,28 +1063,6 @@
context order
begin
-definition mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
- "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)"
-
-lemma monoI [intro?]:
- fixes f :: "'a \<Rightarrow> 'b::order"
- shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f"
- unfolding mono_def by iprover
-
-lemma monoD [dest?]:
- fixes f :: "'a \<Rightarrow> 'b::order"
- shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
- unfolding mono_def by iprover
-
-lemma monoE:
- fixes f :: "'a \<Rightarrow> 'b::order"
- assumes "mono f"
- assumes "x \<le> y"
- obtains "f x \<le> f y"
-proof
- from assms show "f x \<le> f y" by (simp add: mono_def)
-qed
-
definition antimono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
"antimono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<ge> f y)"
@@ -1107,107 +1085,6 @@
from assms show "f x \<ge> f y" by (simp add: antimono_def)
qed
-definition strict_mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
- "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)"
-
-lemma strict_monoI [intro?]:
- assumes "\<And>x y. x < y \<Longrightarrow> f x < f y"
- shows "strict_mono f"
- using assms unfolding strict_mono_def by auto
-
-lemma strict_monoD [dest?]:
- "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y"
- unfolding strict_mono_def by auto
-
-lemma strict_mono_mono [dest?]:
- assumes "strict_mono f"
- shows "mono f"
-proof (rule monoI)
- fix x y
- assume "x \<le> y"
- show "f x \<le> f y"
- proof (cases "x = y")
- case True then show ?thesis by simp
- next
- case False with \<open>x \<le> y\<close> have "x < y" by simp
- with assms strict_monoD have "f x < f y" by auto
- then show ?thesis by simp
-
- qed
-qed
-
-end
-
-context linorder
-begin
-
-lemma mono_invE:
- fixes f :: "'a \<Rightarrow> 'b::order"
- assumes "mono f"
- assumes "f x < f y"
- obtains "x \<le> y"
-proof
- show "x \<le> y"
- proof (rule ccontr)
- assume "\<not> x \<le> y"
- then have "y \<le> x" by simp
- with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE)
- with \<open>f x < f y\<close> show False by simp
- qed
-qed
-
-lemma mono_strict_invE:
- fixes f :: "'a \<Rightarrow> 'b::order"
- assumes "mono f"
- assumes "f x < f y"
- obtains "x < y"
-proof
- show "x < y"
- proof (rule ccontr)
- assume "\<not> x < y"
- then have "y \<le> x" by simp
- with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE)
- with \<open>f x < f y\<close> show False by simp
- qed
-qed
-
-lemma strict_mono_eq:
- assumes "strict_mono f"
- shows "f x = f y \<longleftrightarrow> x = y"
-proof
- assume "f x = f y"
- show "x = y" proof (cases x y rule: linorder_cases)
- case less with assms strict_monoD have "f x < f y" by auto
- with \<open>f x = f y\<close> show ?thesis by simp
- next
- case equal then show ?thesis .
- next
- case greater with assms strict_monoD have "f y < f x" by auto
- with \<open>f x = f y\<close> show ?thesis by simp
- qed
-qed simp
-
-lemma strict_mono_less_eq:
- assumes "strict_mono f"
- shows "f x \<le> f y \<longleftrightarrow> x \<le> y"
-proof
- assume "x \<le> y"
- with assms strict_mono_mono monoD show "f x \<le> f y" by auto
-next
- assume "f x \<le> f y"
- show "x \<le> y" proof (rule ccontr)
- assume "\<not> x \<le> y" then have "y < x" by simp
- with assms strict_monoD have "f y < f x" by auto
- with \<open>f x \<le> f y\<close> show False by simp
- qed
-qed
-
-lemma strict_mono_less:
- assumes "strict_mono f"
- shows "f x < f y \<longleftrightarrow> x < y"
- using assms
- by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq)
-
end
@@ -1614,9 +1491,6 @@
lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x"
by (rule le_funE)
-lemma mono_compose: "mono Q \<Longrightarrow> mono (\<lambda>i x. Q i (f x))"
- unfolding mono_def le_fun_def by auto
-
subsection \<open>Order on unary and binary predicates\<close>