--- a/src/HOL/MicroJava/BV/BVSpec.thy Thu Feb 01 20:51:48 2001 +0100
+++ b/src/HOL/MicroJava/BV/BVSpec.thy Thu Feb 01 20:53:13 2001 +0100
@@ -12,30 +12,30 @@
constdefs
wt_instr :: "[instr,jvm_prog,ty,method_type,nat,p_count,p_count] => bool"
"wt_instr i G rT phi mxs max_pc pc ==
- app i G mxs rT (phi!pc) \\<and>
- (\\<forall> pc' \\<in> set (succs i pc). pc' < max_pc \\<and> (G \\<turnstile> step i G (phi!pc) <=' phi!pc'))"
+ app i G mxs rT (phi!pc) \<and>
+ (\<forall> pc' \<in> set (succs i pc). pc' < max_pc \<and> (G \<turnstile> step i G (phi!pc) <=' phi!pc'))"
wt_start :: "[jvm_prog,cname,ty list,nat,method_type] => bool"
"wt_start G C pTs mxl phi ==
- G \\<turnstile> Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err)) <=' phi!0"
+ G \<turnstile> Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err)) <=' phi!0"
wt_method :: "[jvm_prog,cname,ty list,ty,nat,nat,instr list,method_type] => bool"
"wt_method G C pTs rT mxs mxl ins phi ==
let max_pc = length ins
in
- 0 < max_pc \\<and> wt_start G C pTs mxl phi \\<and>
- (\\<forall>pc. pc<max_pc --> wt_instr (ins ! pc) G rT phi mxs max_pc pc)"
+ 0 < max_pc \<and> wt_start G C pTs mxl phi \<and>
+ (\<forall>pc. pc<max_pc --> wt_instr (ins ! pc) G rT phi mxs max_pc pc)"
wt_jvm_prog :: "[jvm_prog,prog_type] => bool"
"wt_jvm_prog G phi ==
- wf_prog (\\<lambda>G C (sig,rT,(maxs,maxl,b)).
+ wf_prog (\<lambda>G C (sig,rT,(maxs,maxl,b)).
wt_method G C (snd sig) rT maxs maxl b (phi C sig)) G"
lemma wt_jvm_progD:
-"wt_jvm_prog G phi ==> (\\<exists>wt. wf_prog wt G)"
+"wt_jvm_prog G phi ==> (\<exists>wt. wf_prog wt G)"
by (unfold wt_jvm_prog_def, blast)
lemma wt_jvm_prog_impl_wt_instr:
@@ -48,54 +48,17 @@
lemma wt_jvm_prog_impl_wt_start:
"[| wt_jvm_prog G phi; is_class G C;
method (G,C) sig = Some (C,rT,maxs,maxl,ins) |] ==>
- 0 < (length ins) \\<and> wt_start G C (snd sig) maxl (phi C sig)"
+ 0 < (length ins) \<and> wt_start G C (snd sig) maxl (phi C sig)"
by (unfold wt_jvm_prog_def, drule method_wf_mdecl,
simp, simp, simp add: wf_mdecl_def wt_method_def)
text {* for most instructions wt\_instr collapses: *}
lemma
"succs i pc = [pc+1] ==> wt_instr i G rT phi mxs max_pc pc =
- (app i G mxs rT (phi!pc) \\<and> pc+1 < max_pc \\<and> (G \\<turnstile> step i G (phi!pc) <=' phi!(pc+1)))"
+ (app i G mxs rT (phi!pc) \<and> pc+1 < max_pc \<and> (G \<turnstile> step i G (phi!pc) <=' phi!(pc+1)))"
by (simp add: wt_instr_def)
-(* ### move to WellForm *)
-
-lemma methd:
- "[| wf_prog wf_mb G; (C,S,fs,mdecls) \\<in> set G; (sig,rT,code) \\<in> set mdecls |]
- ==> method (G,C) sig = Some(C,rT,code) \\<and> is_class G C"
-proof -
- assume wf: "wf_prog wf_mb G"
- assume C: "(C,S,fs,mdecls) \\<in> set G"
-
- assume m: "(sig,rT,code) \\<in> set mdecls"
- moreover
- from wf
- have "class G Object = Some (arbitrary, [], [])"
- by simp
- moreover
- from wf C
- have c: "class G C = Some (S,fs,mdecls)"
- by (auto simp add: wf_prog_def class_def is_class_def intro: map_of_SomeI)
- ultimately
- have O: "C \\<noteq> Object"
- by auto
-
- from wf C
- have "unique mdecls"
- by (unfold wf_prog_def wf_cdecl_def) auto
-
- hence "unique (map (\\<lambda>(s,m). (s,C,m)) mdecls)"
- by - (induct mdecls, auto)
-
- with m
- have "map_of (map (\\<lambda>(s,m). (s,C,m)) mdecls) sig = Some (C,rT,code)"
- by (force intro: map_of_SomeI)
-
- with wf C m c O
- show ?thesis
- by (auto simp add: is_class_def dest: method_rec [of _ _ C])
-qed
end