src/CCL/Lfp.ML
changeset 0 a5a9c433f639
child 757 2ca12511676d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CCL/Lfp.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,82 @@
+(*  Title: 	CCL/lfp
+    ID:         $Id$
+
+Modified version of
+    Title: 	HOL/lfp.ML
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+
+For lfp.thy.  The Knaster-Tarski Theorem
+*)
+
+open Lfp;
+
+(*** Proof of Knaster-Tarski Theorem ***)
+
+(* lfp(f) is the greatest lower bound of {u. f(u) <= u} *)
+
+val prems = goalw Lfp.thy [lfp_def] "[| f(A) <= A |] ==> lfp(f) <= A";
+by (rtac (CollectI RS Inter_lower) 1);
+by (resolve_tac prems 1);
+val lfp_lowerbound = result();
+
+val prems = goalw Lfp.thy [lfp_def]
+    "[| !!u. f(u) <= u ==> A<=u |] ==> A <= lfp(f)";
+by (REPEAT (ares_tac ([Inter_greatest]@prems) 1));
+by (etac CollectD 1);
+val lfp_greatest = result();
+
+val [mono] = goal Lfp.thy "mono(f) ==> f(lfp(f)) <= lfp(f)";
+by (EVERY1 [rtac lfp_greatest, rtac subset_trans,
+	    rtac (mono RS monoD), rtac lfp_lowerbound, atac, atac]);
+val lfp_lemma2 = result();
+
+val [mono] = goal Lfp.thy "mono(f) ==> lfp(f) <= f(lfp(f))";
+by (EVERY1 [rtac lfp_lowerbound, rtac (mono RS monoD), 
+	    rtac lfp_lemma2, rtac mono]);
+val lfp_lemma3 = result();
+
+val [mono] = goal Lfp.thy "mono(f) ==> lfp(f) = f(lfp(f))";
+by (REPEAT (resolve_tac [equalityI,lfp_lemma2,lfp_lemma3,mono] 1));
+val lfp_Tarski = result();
+
+
+(*** General induction rule for least fixed points ***)
+
+val [lfp,mono,indhyp] = goal Lfp.thy
+    "[| a: lfp(f);  mono(f);  				\
+\       !!x. [| x: f(lfp(f) Int {x.P(x)}) |] ==> P(x) 	\
+\    |] ==> P(a)";
+by (res_inst_tac [("a","a")] (Int_lower2 RS subsetD RS CollectD) 1);
+by (rtac (lfp RSN (2, lfp_lowerbound RS subsetD)) 1);
+by (EVERY1 [rtac Int_greatest, rtac subset_trans, 
+	    rtac (Int_lower1 RS (mono RS monoD)),
+	    rtac (mono RS lfp_lemma2),
+	    rtac (CollectI RS subsetI), rtac indhyp, atac]);
+val induct = result();
+
+(** Definition forms of lfp_Tarski and induct, to control unfolding **)
+
+val [rew,mono] = goal Lfp.thy "[| h==lfp(f);  mono(f) |] ==> h = f(h)";
+by (rewtac rew);
+by (rtac (mono RS lfp_Tarski) 1);
+val def_lfp_Tarski = result();
+
+val rew::prems = goal Lfp.thy
+    "[| A == lfp(f);  a:A;  mono(f);   			\
+\       !!x. [| x: f(A Int {x.P(x)}) |] ==> P(x) 	\
+\    |] ==> P(a)";
+by (EVERY1 [rtac induct,	(*backtracking to force correct induction*)
+	    REPEAT1 o (ares_tac (map (rewrite_rule [rew]) prems))]);
+val def_induct = result();
+
+(*Monotonicity of lfp!*)
+val prems = goal Lfp.thy
+    "[| mono(g);  !!Z. f(Z)<=g(Z) |] ==> lfp(f) <= lfp(g)";
+by (rtac lfp_lowerbound 1);
+by (rtac subset_trans 1);
+by (resolve_tac prems 1);
+by (rtac lfp_lemma2 1);
+by (resolve_tac prems 1);
+val lfp_mono = result();
+