--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CCL/Term.ML Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,146 @@
+(* Title: CCL/terms
+ ID: $Id$
+ Author: Martin Coen, Cambridge University Computer Laboratory
+ Copyright 1993 University of Cambridge
+
+For terms.thy.
+*)
+
+open Term;
+
+val simp_can_defs = [one_def,inl_def,inr_def];
+val simp_ncan_defs = [if_def,when_def,split_def,fst_def,snd_def,thd_def];
+val simp_defs = simp_can_defs @ simp_ncan_defs;
+
+val ind_can_defs = [zero_def,succ_def,nil_def,cons_def];
+val ind_ncan_defs = [ncase_def,nrec_def,lcase_def,lrec_def];
+val ind_defs = ind_can_defs @ ind_ncan_defs;
+
+val data_defs = simp_defs @ ind_defs @ [napply_def];
+val genrec_defs = [letrec_def,letrec2_def,letrec3_def];
+
+val term_congs = ccl_mk_congs Term.thy
+ ["inl","inr","succ","op .","split","if","when","ncase","nrec","lcase","lrec",
+ "fst","snd","thd","let","letrec","letrec2","letrec3","napply"];
+
+(*** Beta Rules, including strictness ***)
+
+goalw Term.thy [let_def] "~ t=bot--> let x be t in f(x) = f(t)";
+by (res_inst_tac [("t","t")] term_case 1);
+by (ALLGOALS(SIMP_TAC(CCL_ss addrews [caseBtrue,caseBfalse,caseBpair,caseBlam])));
+val letB = result() RS mp;
+
+goalw Term.thy [let_def] "let x be bot in f(x) = bot";
+br caseBbot 1;
+val letBabot = result();
+
+goalw Term.thy [let_def] "let x be t in bot = bot";
+brs ([caseBbot] RL [term_case]) 1;
+by (ALLGOALS(SIMP_TAC(CCL_ss addrews [caseBtrue,caseBfalse,caseBpair,caseBlam])));
+val letBbbot = result();
+
+goalw Term.thy [apply_def] "(lam x.b(x)) ` a = b(a)";
+by (ALLGOALS(SIMP_TAC(CCL_ss addrews [caseBtrue,caseBfalse,caseBpair,caseBlam])));
+val applyB = result();
+
+goalw Term.thy [apply_def] "bot ` a = bot";
+br caseBbot 1;
+val applyBbot = result();
+
+goalw Term.thy [fix_def] "fix(f) = f(fix(f))";
+by (resolve_tac [applyB RS ssubst] 1 THEN resolve_tac [refl] 1);
+val fixB = result();
+
+goalw Term.thy [letrec_def]
+ "letrec g x be h(x,g) in g(a) = h(a,%y.letrec g x be h(x,g) in g(y))";
+by (resolve_tac [fixB RS ssubst] 1 THEN
+ resolve_tac [applyB RS ssubst] 1 THEN resolve_tac [refl] 1);
+val letrecB = result();
+
+val rawBs = caseBs @ [applyB,applyBbot,letrecB];
+
+fun raw_mk_beta_rl defs s = prove_goalw Term.thy defs s
+ (fn _ => [SIMP_TAC (CCL_ss addrews rawBs addcongs term_congs) 1]);
+fun mk_beta_rl s = raw_mk_beta_rl data_defs s;
+
+val ifBtrue = mk_beta_rl "if true then t else u = t";
+val ifBfalse = mk_beta_rl "if false then t else u = u";
+val ifBbot = mk_beta_rl "if bot then t else u = bot";
+
+val whenBinl = mk_beta_rl "when(inl(a),t,u) = t(a)";
+val whenBinr = mk_beta_rl "when(inr(a),t,u) = u(a)";
+val whenBbot = mk_beta_rl "when(bot,t,u) = bot";
+
+val splitB = mk_beta_rl "split(<a,b>,h) = h(a,b)";
+val splitBbot = mk_beta_rl "split(bot,h) = bot";
+val fstB = mk_beta_rl "fst(<a,b>) = a";
+val fstBbot = mk_beta_rl "fst(bot) = bot";
+val sndB = mk_beta_rl "snd(<a,b>) = b";
+val sndBbot = mk_beta_rl "snd(bot) = bot";
+val thdB = mk_beta_rl "thd(<a,<b,c>>) = c";
+val thdBbot = mk_beta_rl "thd(bot) = bot";
+
+val ncaseBzero = mk_beta_rl "ncase(zero,t,u) = t";
+val ncaseBsucc = mk_beta_rl "ncase(succ(n),t,u) = u(n)";
+val ncaseBbot = mk_beta_rl "ncase(bot,t,u) = bot";
+val nrecBzero = mk_beta_rl "nrec(zero,t,u) = t";
+val nrecBsucc = mk_beta_rl "nrec(succ(n),t,u) = u(n,nrec(n,t,u))";
+val nrecBbot = mk_beta_rl "nrec(bot,t,u) = bot";
+
+val lcaseBnil = mk_beta_rl "lcase([],t,u) = t";
+val lcaseBcons = mk_beta_rl "lcase(x.xs,t,u) = u(x,xs)";
+val lcaseBbot = mk_beta_rl "lcase(bot,t,u) = bot";
+val lrecBnil = mk_beta_rl "lrec([],t,u) = t";
+val lrecBcons = mk_beta_rl "lrec(x.xs,t,u) = u(x,xs,lrec(xs,t,u))";
+val lrecBbot = mk_beta_rl "lrec(bot,t,u) = bot";
+
+val letrec2B = raw_mk_beta_rl (data_defs @ [letrec2_def])
+ "letrec g x y be h(x,y,g) in g(p,q) = \
+\ h(p,q,%u v.letrec g x y be h(x,y,g) in g(u,v))";
+val letrec3B = raw_mk_beta_rl (data_defs @ [letrec3_def])
+ "letrec g x y z be h(x,y,z,g) in g(p,q,r) = \
+\ h(p,q,r,%u v w.letrec g x y z be h(x,y,z,g) in g(u,v,w))";
+
+val napplyBzero = mk_beta_rl "f^zero`a = a";
+val napplyBsucc = mk_beta_rl "f^succ(n)`a = f(f^n`a)";
+
+val termBs = [letB,applyB,applyBbot,splitB,splitBbot,
+ fstB,fstBbot,sndB,sndBbot,thdB,thdBbot,
+ ifBtrue,ifBfalse,ifBbot,whenBinl,whenBinr,whenBbot,
+ ncaseBzero,ncaseBsucc,ncaseBbot,nrecBzero,nrecBsucc,nrecBbot,
+ lcaseBnil,lcaseBcons,lcaseBbot,lrecBnil,lrecBcons,lrecBbot,
+ napplyBzero,napplyBsucc];
+
+(*** Constructors are injective ***)
+
+val term_injs = map (mk_inj_rl Term.thy
+ [applyB,splitB,whenBinl,whenBinr,ncaseBsucc,lcaseBcons]
+ (ccl_congs @ term_congs))
+ ["(inl(a) = inl(a')) <-> (a=a')",
+ "(inr(a) = inr(a')) <-> (a=a')",
+ "(succ(a) = succ(a')) <-> (a=a')",
+ "(a.b = a'.b') <-> (a=a' & b=b')"];
+
+(*** Constructors are distinct ***)
+
+val term_dstncts = mkall_dstnct_thms Term.thy data_defs (ccl_injs @ term_injs)
+ [["bot","inl","inr"],["bot","zero","succ"],["bot","nil","op ."]];
+
+(*** Rules for pre-order [= ***)
+
+local
+ fun mk_thm s = prove_goalw Term.thy data_defs s (fn _ =>
+ [SIMP_TAC (ccl_ss addrews (ccl_porews)) 1]);
+in
+ val term_porews = map mk_thm ["inl(a) [= inl(a') <-> a [= a'",
+ "inr(b) [= inr(b') <-> b [= b'",
+ "succ(n) [= succ(n') <-> n [= n'",
+ "x.xs [= x'.xs' <-> x [= x' & xs [= xs'"];
+end;
+
+(*** Rewriting and Proving ***)
+
+val term_rews = termBs @ term_injs @ term_dstncts @ ccl_porews @ term_porews;
+val term_ss = ccl_ss addrews term_rews addcongs term_congs;
+
+val term_cs = ccl_cs addSEs (term_dstncts RL [notE]) addSDs (XH_to_Ds term_injs);