src/CTT/CTT.thy
changeset 0 a5a9c433f639
child 23 1cd377c2f7c6
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CTT/CTT.thy	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,253 @@
+(*  Title:      CTT/ctt.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Constructive Type Theory
+*)
+
+CTT = Pure +
+
+types i,t,o 0
+
+arities i,t,o :: logic
+
+consts
+  (*Types*)
+  F,T       :: "t"          (*F is empty, T contains one element*)
+  contr     :: "i=>i"
+  tt        :: "i"
+  (*Natural numbers*)
+  N         :: "t"
+  succ      :: "i=>i"
+  rec       :: "[i, i, [i,i]=>i] => i"
+  (*Unions*)
+  inl,inr   :: "i=>i"
+  when      :: "[i, i=>i, i=>i]=>i"
+  (*General Sum and Binary Product*)
+  Sum       :: "[t, i=>t]=>t"
+  fst,snd   :: "i=>i"
+  split     :: "[i, [i,i]=>i] =>i"
+  (*General Product and Function Space*)
+  Prod      :: "[t, i=>t]=>t"
+  (*Equality type*)
+  Eq        :: "[t,i,i]=>t"
+  eq        :: "i"
+  (*Judgements*)
+  Type      :: "t => prop"          ("(_ type)" [10] 5)
+  Eqtype    :: "[t,t]=>prop"        ("(3_ =/ _)" [10,10] 5)
+  Elem      :: "[i, t]=>prop"       ("(_ /: _)" [10,10] 5)
+  Eqelem    :: "[i,i,t]=>prop"      ("(3_ =/ _ :/ _)" [10,10,10] 5)
+  Reduce    :: "[i,i]=>prop"        ("Reduce[_,_]")
+  (*Types*)
+  "@PROD"   :: "[id,t,t]=>t"        ("(3PROD _:_./ _)" 10)
+  "@SUM"    :: "[id,t,t]=>t"        ("(3SUM _:_./ _)" 10)
+  "+"       :: "[t,t]=>t"           (infixr 40)
+  (*Invisible infixes!*)
+  "@-->"    :: "[t,t]=>t"           ("(_ -->/ _)" [31,30] 30)
+  "@*"      :: "[t,t]=>t"           ("(_ */ _)" [51,50] 50)
+  (*Functions*)
+  lambda    :: "(i => i) => i"      (binder "lam " 10)
+  "`"       :: "[i,i]=>i"           (infixl 60)
+  (*Natural numbers*)
+  "0"       :: "i"                  ("0")
+  (*Pairing*)
+  pair      :: "[i,i]=>i"           ("(1<_,/_>)")
+
+translations
+  "PROD x:A. B" => "Prod(A, %x. B)"
+  "SUM x:A. B"  => "Sum(A, %x. B)"
+
+rules
+
+  (*Reduction: a weaker notion than equality;  a hack for simplification.
+    Reduce[a,b] means either that  a=b:A  for some A or else that "a" and "b"
+    are textually identical.*)
+
+  (*does not verify a:A!  Sound because only trans_red uses a Reduce premise
+    No new theorems can be proved about the standard judgements.*)
+  refl_red "Reduce[a,a]"
+  red_if_equal "a = b : A ==> Reduce[a,b]"
+  trans_red "[| a = b : A;  Reduce[b,c] |] ==> a = c : A"
+
+  (*Reflexivity*)
+
+  refl_type "A type ==> A = A"
+  refl_elem "a : A ==> a = a : A"
+
+  (*Symmetry*)
+
+  sym_type  "A = B ==> B = A"
+  sym_elem  "a = b : A ==> b = a : A"
+
+  (*Transitivity*)
+
+  trans_type   "[| A = B;  B = C |] ==> A = C"
+  trans_elem   "[| a = b : A;  b = c : A |] ==> a = c : A"
+
+  equal_types  "[| a : A;  A = B |] ==> a : B"
+  equal_typesL "[| a = b : A;  A = B |] ==> a = b : B"
+
+  (*Substitution*)
+
+  subst_type   "[| a : A;  !!z. z:A ==> B(z) type |] ==> B(a) type"
+  subst_typeL  "[| a = c : A;  !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"
+
+  subst_elem   "[| a : A;  !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"
+  subst_elemL
+    "[| a=c : A;  !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)"
+
+
+  (*The type N -- natural numbers*)
+
+  NF "N type"
+  NI0 "0 : N"
+  NI_succ "a : N ==> succ(a) : N"
+  NI_succL  "a = b : N ==> succ(a) = succ(b) : N"
+
+  NE
+   "[| p: N;  a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \
+\   ==> rec(p, a, %u v.b(u,v)) : C(p)"
+
+  NEL
+   "[| p = q : N;  a = c : C(0);  \
+\      !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] \
+\   ==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)"
+
+  NC0
+   "[| a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \
+\   ==> rec(0, a, %u v.b(u,v)) = a : C(0)"
+
+  NC_succ
+   "[| p: N;  a: C(0);  \
+\       !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>  \
+\   rec(succ(p), a, %u v.b(u,v)) = b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))"
+
+  (*The fourth Peano axiom.  See page 91 of Martin-Lof's book*)
+  zero_ne_succ
+    "[| a: N;  0 = succ(a) : N |] ==> 0: F"
+
+
+  (*The Product of a family of types*)
+
+  ProdF  "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A.B(x) type"
+
+  ProdFL
+   "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> \
+\   PROD x:A.B(x) = PROD x:C.D(x)"
+
+  ProdI
+   "[| A type;  !!x. x:A ==> b(x):B(x)|] ==> lam x.b(x) : PROD x:A.B(x)"
+
+  ProdIL
+   "[| A type;  !!x. x:A ==> b(x) = c(x) : B(x)|] ==> \
+\   lam x.b(x) = lam x.c(x) : PROD x:A.B(x)"
+
+  ProdE  "[| p : PROD x:A.B(x);  a : A |] ==> p`a : B(a)"
+  ProdEL "[| p=q: PROD x:A.B(x);  a=b : A |] ==> p`a = q`b : B(a)"
+
+  ProdC
+   "[| a : A;  !!x. x:A ==> b(x) : B(x)|] ==> \
+\   (lam x.b(x)) ` a = b(a) : B(a)"
+
+  ProdC2
+   "p : PROD x:A.B(x) ==> (lam x. p`x) = p : PROD x:A.B(x)"
+
+
+  (*The Sum of a family of types*)
+
+  SumF  "[| A type;  !!x. x:A ==> B(x) type |] ==> SUM x:A.B(x) type"
+  SumFL
+    "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A.B(x) = SUM x:C.D(x)"
+
+  SumI  "[| a : A;  b : B(a) |] ==> <a,b> : SUM x:A.B(x)"
+  SumIL "[| a=c:A;  b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A.B(x)"
+
+  SumE
+    "[| p: SUM x:A.B(x);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] \
+\    ==> split(p, %x y.c(x,y)) : C(p)"
+
+  SumEL
+    "[| p=q : SUM x:A.B(x); \
+\       !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] \
+\    ==> split(p, %x y.c(x,y)) = split(q, % x y.d(x,y)) : C(p)"
+
+  SumC
+    "[| a: A;  b: B(a);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] \
+\    ==> split(<a,b>, %x y.c(x,y)) = c(a,b) : C(<a,b>)"
+
+  fst_def   "fst(a) == split(a, %x y.x)"
+  snd_def   "snd(a) == split(a, %x y.y)"
+
+
+  (*The sum of two types*)
+
+  PlusF   "[| A type;  B type |] ==> A+B type"
+  PlusFL  "[| A = C;  B = D |] ==> A+B = C+D"
+
+  PlusI_inl   "[| a : A;  B type |] ==> inl(a) : A+B"
+  PlusI_inlL "[| a = c : A;  B type |] ==> inl(a) = inl(c) : A+B"
+
+  PlusI_inr   "[| A type;  b : B |] ==> inr(b) : A+B"
+  PlusI_inrL "[| A type;  b = d : B |] ==> inr(b) = inr(d) : A+B"
+
+  PlusE
+    "[| p: A+B;  !!x. x:A ==> c(x): C(inl(x));  \
+\                !!y. y:B ==> d(y): C(inr(y)) |] \
+\    ==> when(p, %x.c(x), %y.d(y)) : C(p)"
+
+  PlusEL
+    "[| p = q : A+B;  !!x. x: A ==> c(x) = e(x) : C(inl(x));   \
+\                     !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] \
+\    ==> when(p, %x.c(x), %y.d(y)) = when(q, %x.e(x), %y.f(y)) : C(p)"
+
+  PlusC_inl
+    "[| a: A;  !!x. x:A ==> c(x): C(inl(x));  \
+\              !!y. y:B ==> d(y): C(inr(y)) |] \
+\    ==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))"
+
+  PlusC_inr
+    "[| b: B;  !!x. x:A ==> c(x): C(inl(x));  \
+\              !!y. y:B ==> d(y): C(inr(y)) |] \
+\    ==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))"
+
+
+  (*The type Eq*)
+
+  EqF    "[| A type;  a : A;  b : A |] ==> Eq(A,a,b) type"
+  EqFL "[| A=B;  a=c: A;  b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"
+  EqI "a = b : A ==> eq : Eq(A,a,b)"
+  EqE "p : Eq(A,a,b) ==> a = b : A"
+
+  (*By equality of types, can prove C(p) from C(eq), an elimination rule*)
+  EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"
+
+  (*The type F*)
+
+  FF "F type"
+  FE "[| p: F;  C type |] ==> contr(p) : C"
+  FEL  "[| p = q : F;  C type |] ==> contr(p) = contr(q) : C"
+
+  (*The type T
+     Martin-Lof's book (page 68) discusses elimination and computation.
+     Elimination can be derived by computation and equality of types,
+     but with an extra premise C(x) type x:T.
+     Also computation can be derived from elimination. *)
+
+  TF "T type"
+  TI "tt : T"
+  TE "[| p : T;  c : C(tt) |] ==> c : C(p)"
+  TEL "[| p = q : T;  c = d : C(tt) |] ==> c = d : C(p)"
+  TC "p : T ==> p = tt : T"
+end
+
+
+ML
+
+val parse_translation =
+  [("@-->", ndependent_tr "Prod"), ("@*", ndependent_tr "Sum")];
+
+val print_translation =
+  [("Prod", dependent_tr' ("@PROD", "@-->")),
+   ("Sum", dependent_tr' ("@SUM", "@*"))];
+