src/CTT/ex/elim.ML
changeset 0 a5a9c433f639
child 281 f1f96b9e6285
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CTT/ex/elim.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,188 @@
+(*  Title: 	CTT/ex/elim
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1991  University of Cambridge
+
+Some examples taken from P. Martin-L\"of, Intuitionistic type theory
+	(Bibliopolis, 1984).
+
+by (safe_tac prems 1);
+by (step_tac prems 1);
+by (pc_tac prems 1);
+*)
+
+writeln"Examples with elimination rules";
+
+
+writeln"This finds the functions fst and snd!"; 
+val prems = goal CTT.thy "A type ==> ?a : (A*A) --> A";
+by (pc_tac prems 1  THEN  fold_tac basic_defs);   (*puts in fst and snd*)
+result();
+writeln"first solution is fst;  backtracking gives snd";
+back(); 
+back() handle ERROR => writeln"And there are indeed no others";  
+
+
+writeln"Double negation of the Excluded Middle";
+val prems = goal CTT.thy "A type ==> ?a : ((A + (A-->F)) --> F) --> F";
+by (intr_tac prems);
+by (rtac ProdE 1);
+by (assume_tac 1);
+by (pc_tac prems 1);
+result();
+
+val prems = goal CTT.thy 
+    "[| A type;  B type |] ==> ?a : (A*B) --> (B*A)";
+by (pc_tac prems 1);
+result();
+(*The sequent version (ITT) could produce an interesting alternative
+  by backtracking.  No longer.*)
+
+writeln"Binary sums and products";
+val prems = goal CTT.thy
+   "[| A type;  B type;  C type |] ==> ?a : (A+B --> C) --> (A-->C) * (B-->C)";
+by (pc_tac prems 1);
+result();
+
+(*A distributive law*)
+val prems = goal CTT.thy 
+    "[| A type;  B type;  C type |] ==> ?a : A * (B+C)  -->  (A*B + A*C)";
+by (pc_tac prems 1);
+result();
+
+(*more general version, same proof*)
+val prems = goal CTT.thy 
+    "[| A type;  !!x. x:A ==> B(x) type;  !!x. x:A ==> C(x) type|] ==> \
+\    ?a : (SUM x:A. B(x) + C(x)) --> (SUM x:A. B(x)) + (SUM x:A. C(x))";
+by (pc_tac prems 1);
+result();
+
+writeln"Construction of the currying functional";
+val prems = goal CTT.thy 
+    "[| A type;  B type;  C type |] ==> ?a : (A*B --> C) --> (A--> (B-->C))";
+by (pc_tac prems 1);
+result();
+
+(*more general goal with same proof*)
+val prems = goal CTT.thy  
+    "[| A type; !!x. x:A ==> B(x) type; !!z. z: (SUM x:A. B(x)) ==> C(z) type|] \
+\    ==> ?a : (PROD z : (SUM x:A . B(x)) . C(z)) \
+\         --> (PROD x:A . PROD y:B(x) . C(<x,y>))";
+by (pc_tac prems 1);
+result();
+
+writeln"Martin-Lof (1984), page 48: axiom of sum-elimination (uncurry)";
+val prems = goal CTT.thy 
+    "[| A type;  B type;  C type |] ==> ?a : (A --> (B-->C)) --> (A*B --> C)";
+by (pc_tac prems 1);
+result();
+
+(*more general goal with same proof*)
+val prems = goal CTT.thy 
+  "[| A type; !!x. x:A ==> B(x) type; !!z. z : (SUM x:A . B(x)) ==> C(z) type|] \
+\  ==> ?a : (PROD x:A . PROD y:B(x) . C(<x,y>)) \
+\       --> (PROD z : (SUM x:A . B(x)) . C(z))";
+by (pc_tac prems 1);
+result();
+
+writeln"Function application";
+val prems = goal CTT.thy  
+    "[| A type;  B type |] ==> ?a : ((A --> B) * A) --> B";
+by (pc_tac prems 1);
+result();
+
+writeln"Basic test of quantifier reasoning";
+val prems = goal CTT.thy  
+    "[| A type;  B type;  !!x y.[| x:A;  y:B |] ==> C(x,y) type |] ==> \
+\    ?a :     (SUM y:B . PROD x:A . C(x,y))  \
+\         --> (PROD x:A . SUM y:B . C(x,y))";
+by (pc_tac prems 1);
+result();
+
+(*faulty proof attempt, stripping the quantifiers in wrong sequence
+by (intr_tac[]);
+by (pc_tac prems 1);        ...fails!!  *)
+
+writeln"Martin-Lof (1984) pages 36-7: the combinator S";
+val prems = goal CTT.thy  
+    "[| A type;  !!x. x:A ==> B(x) type;  \
+\       !!x y.[| x:A; y:B(x) |] ==> C(x,y) type |] \
+\    ==> ?a :    (PROD x:A. PROD y:B(x). C(x,y)) \
+\            --> (PROD f: (PROD x:A. B(x)). PROD x:A. C(x, f`x))";
+by (pc_tac prems 1);
+result();
+
+writeln"Martin-Lof (1984) page 58: the axiom of disjunction elimination";
+val prems = goal CTT.thy
+    "[| A type;  B type;  !!z. z: A+B ==> C(z) type|] ==> \
+\    ?a : (PROD x:A. C(inl(x))) --> (PROD y:B. C(inr(y)))  \
+\         --> (PROD z: A+B. C(z))";
+by (pc_tac prems 1);
+result();
+
+(*towards AXIOM OF CHOICE*)
+val prems = goal CTT.thy  
+  "[| A type;  B type;  C type |] ==> ?a : (A --> B*C) --> (A-->B) * (A-->C)";
+by (pc_tac prems 1);
+by (fold_tac basic_defs);   (*puts in fst and snd*)
+result();
+
+(*Martin-Lof (1984) page 50*)
+writeln"AXIOM OF CHOICE!!!  Delicate use of elimination rules";
+val prems = goal CTT.thy   
+    "[| A type;  !!x. x:A ==> B(x) type;  \
+\       !!x y.[| x:A;  y:B(x) |] ==> C(x,y) type|]  \
+\    ==> ?a :    (PROD x:A. SUM y:B(x). C(x,y))    \
+\            --> (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f`x))";
+by (intr_tac prems);
+by (add_mp_tac 2);
+by (add_mp_tac 1);
+by (etac SumE_fst 1);
+by (rtac replace_type 1);
+by (rtac subst_eqtyparg 1);
+by (resolve_tac comp_rls 1);
+by (rtac SumE_snd 4);
+by (typechk_tac (SumE_fst::prems));
+result();
+
+writeln"Axiom of choice.  Proof without fst, snd.  Harder still!"; 
+val prems = goal CTT.thy   
+    "[| A type;  !!x.x:A ==> B(x) type;  \
+\       !!x y.[| x:A;  y:B(x) |] ==> C(x,y) type|] \
+\    ==> ?a :    (PROD x:A. SUM y:B(x). C(x,y)) \
+\            --> (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f`x))";
+by (intr_tac prems);
+(*Must not use add_mp_tac as subst_prodE hides the construction.*)
+by (resolve_tac [ProdE RS SumE] 1  THEN  assume_tac 1);
+by (TRYALL assume_tac);
+by (rtac replace_type 1);
+by (rtac subst_eqtyparg 1);
+by (resolve_tac comp_rls 1);
+by (etac (ProdE RS SumE) 4);
+by (typechk_tac prems);
+by (rtac replace_type 1);
+by (rtac subst_eqtyparg 1);
+by (resolve_tac comp_rls 1);
+by (typechk_tac prems);
+by (assume_tac 1);
+by (fold_tac basic_defs);  (*puts in fst and snd*)
+result();
+
+writeln"Example of sequent_style deduction"; 
+(*When splitting z:A*B, the assumption C(z) is affected;  ?a becomes
+    lam u. split(u,%v w.split(v,%x y.lam z. <x,<y,z>>) ` w)     *)
+val prems = goal CTT.thy   
+    "[| A type;  B type;  !!z. z:A*B ==> C(z) type |] ==>  \
+\    ?a : (SUM z:A*B. C(z)) --> (SUM u:A. SUM v:B. C(<u,v>))";
+by (resolve_tac intr_rls 1);
+by (biresolve_tac safe_brls 2);
+(*Now must convert assumption C(z) into antecedent C(<kd,ke>) *)
+by (res_inst_tac [ ("a","y") ] ProdE 2);
+by (typechk_tac prems);
+by (rtac SumE 1  THEN  assume_tac 1);
+by (intr_tac[]);
+by (TRYALL assume_tac);
+by (typechk_tac prems);
+result();
+
+writeln"Reached end of file.";