--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/FOL/fol.ML Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,94 @@
+(* Title: FOL/fol.ML
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1991 University of Cambridge
+
+Tactics and lemmas for fol.thy (classical First-Order Logic)
+*)
+
+open FOL;
+
+signature FOL_LEMMAS =
+ sig
+ val disjCI : thm
+ val excluded_middle : thm
+ val exCI : thm
+ val ex_classical : thm
+ val iffCE : thm
+ val impCE : thm
+ val notnotD : thm
+ val swap : thm
+ end;
+
+
+structure FOL_Lemmas : FOL_LEMMAS =
+struct
+
+(*** Classical introduction rules for | and EX ***)
+
+val disjCI = prove_goal FOL.thy
+ "(~Q ==> P) ==> P|Q"
+ (fn prems=>
+ [ (resolve_tac [classical] 1),
+ (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
+ (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
+
+(*introduction rule involving only EX*)
+val ex_classical = prove_goal FOL.thy
+ "( ~(EX x. P(x)) ==> P(a)) ==> EX x.P(x)"
+ (fn prems=>
+ [ (resolve_tac [classical] 1),
+ (eresolve_tac (prems RL [exI]) 1) ]);
+
+(*version of above, simplifying ~EX to ALL~ *)
+val exCI = prove_goal FOL.thy
+ "(ALL x. ~P(x) ==> P(a)) ==> EX x.P(x)"
+ (fn [prem]=>
+ [ (resolve_tac [ex_classical] 1),
+ (resolve_tac [notI RS allI RS prem] 1),
+ (eresolve_tac [notE] 1),
+ (eresolve_tac [exI] 1) ]);
+
+val excluded_middle = prove_goal FOL.thy "~P | P"
+ (fn _=> [ rtac disjCI 1, assume_tac 1 ]);
+
+
+(*** Special elimination rules *)
+
+
+(*Classical implies (-->) elimination. *)
+val impCE = prove_goal FOL.thy
+ "[| P-->Q; ~P ==> R; Q ==> R |] ==> R"
+ (fn major::prems=>
+ [ (resolve_tac [excluded_middle RS disjE] 1),
+ (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
+
+(*Double negation law*)
+val notnotD = prove_goal FOL.thy "~~P ==> P"
+ (fn [major]=>
+ [ (resolve_tac [classical] 1), (eresolve_tac [major RS notE] 1) ]);
+
+
+(*** Tactics for implication and contradiction ***)
+
+(*Classical <-> elimination. Proof substitutes P=Q in
+ ~P ==> ~Q and P ==> Q *)
+val iffCE = prove_goalw FOL.thy [iff_def]
+ "[| P<->Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R"
+ (fn prems =>
+ [ (resolve_tac [conjE] 1),
+ (REPEAT (DEPTH_SOLVE_1
+ (etac impCE 1 ORELSE mp_tac 1 ORELSE ares_tac prems 1))) ]);
+
+
+(*Should be used as swap since ~P becomes redundant*)
+val swap = prove_goal FOL.thy
+ "~P ==> (~Q ==> P) ==> Q"
+ (fn major::prems=>
+ [ (resolve_tac [classical] 1),
+ (rtac (major RS notE) 1),
+ (REPEAT (ares_tac prems 1)) ]);
+
+end;
+
+open FOL_Lemmas;