src/Provers/classical.ML
changeset 0 a5a9c433f639
child 54 3dea30013b58
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Provers/classical.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,206 @@
+(*  Title: 	Provers/classical
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1992  University of Cambridge
+
+Theorem prover for classical reasoning, including predicate calculus, set
+theory, etc.
+
+Rules must be classified as intr, elim, safe, hazardous.
+
+A rule is unsafe unless it can be applied blindly without harmful results.
+For a rule to be safe, its premises and conclusion should be logically
+equivalent.  There should be no variables in the premises that are not in
+the conclusion.
+*)
+
+signature CLASSICAL_DATA =
+  sig
+  val mp: thm    		(* [| P-->Q;  P |] ==> Q *)
+  val not_elim: thm		(* [| ~P;  P |] ==> R *)
+  val swap: thm			(* ~P ==> (~Q ==> P) ==> Q *)
+  val sizef : thm -> int	(* size function for BEST_FIRST *)
+  val hyp_subst_tacs: (int -> tactic) list
+  end;
+
+(*Higher precedence than := facilitates use of references*)
+infix 4 addSIs addSEs addSDs addIs addEs addDs;
+
+
+signature CLASSICAL =
+  sig
+  type claset
+  val empty_cs: claset
+  val addDs : claset * thm list -> claset
+  val addEs : claset * thm list -> claset
+  val addIs : claset * thm list -> claset
+  val addSDs: claset * thm list -> claset
+  val addSEs: claset * thm list -> claset
+  val addSIs: claset * thm list -> claset
+  val print_cs: claset -> unit
+  val rep_claset: claset -> 
+      {safeIs: thm list, safeEs: thm list, hazIs: thm list, hazEs: thm list}
+  val best_tac : claset -> int -> tactic
+  val chain_tac : int -> tactic
+  val contr_tac : int -> tactic
+  val eq_mp_tac: int -> tactic
+  val fast_tac : claset -> int -> tactic
+  val joinrules : thm list * thm list -> (bool * thm) list
+  val mp_tac: int -> tactic
+  val safe_tac : claset -> tactic
+  val safe_step_tac : claset -> int -> tactic
+  val slow_step_tac : claset -> int -> tactic
+  val slow_best_tac : claset -> int -> tactic
+  val slow_tac : claset -> int -> tactic
+  val step_tac : claset -> int -> tactic
+  val swapify : thm list -> thm list
+  val swap_res_tac : thm list -> int -> tactic
+  val inst_step_tac : claset -> int -> tactic
+  end;
+
+
+functor ClassicalFun(Data: CLASSICAL_DATA): CLASSICAL = 
+struct
+
+local open Data in
+
+(** Useful tactics for classical reasoning **)
+
+val imp_elim = make_elim mp;
+
+(*Solve goal that assumes both P and ~P. *)
+val contr_tac = eresolve_tac [not_elim]  THEN'  assume_tac;
+
+(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
+fun mp_tac i = eresolve_tac ([not_elim,imp_elim]) i  THEN  assume_tac i;
+
+(*Like mp_tac but instantiates no variables*)
+fun eq_mp_tac i = ematch_tac ([not_elim,imp_elim]) i  THEN  eq_assume_tac i;
+
+(*Creates rules to eliminate ~A, from rules to introduce A*)
+fun swapify intrs = intrs RLN (2, [swap]);
+
+(*Uses introduction rules in the normal way, or on negated assumptions,
+  trying rules in order. *)
+fun swap_res_tac rls = 
+    let fun tacf rl = rtac rl ORELSE' etac (rl RSN (2,swap))
+    in  assume_tac ORELSE' contr_tac ORELSE' FIRST' (map tacf rls)
+    end;
+
+(*Given assumption P-->Q, reduces subgoal Q to P [deletes the implication!] *)
+fun chain_tac i =
+    eresolve_tac [imp_elim] i  THEN
+    (assume_tac (i+1)  ORELSE  contr_tac (i+1));
+
+(*** Classical rule sets ***)
+
+type netpair = (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net;
+
+datatype claset =
+  CS of {safeIs		: thm list,
+	 safeEs		: thm list,
+	 hazIs		: thm list,
+	 hazEs		: thm list,
+	 safe0_netpair	: netpair,
+	 safep_netpair	: netpair,
+	 haz_netpair  	: netpair};
+
+fun rep_claset (CS{safeIs,safeEs,hazIs,hazEs,...}) = 
+    {safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs};
+
+(*For use with biresolve_tac.  Combines intrs with swap to catch negated
+  assumptions; pairs elims with true; sorts. *)
+fun joinrules (intrs,elims) =  
+  sort lessb 
+    (map (pair true) (elims @ swapify intrs)  @
+     map (pair false) intrs);
+
+(*Make a claset from the four kinds of rules*)
+fun make_cs {safeIs,safeEs,hazIs,hazEs} =
+  let val (safe0_brls, safep_brls) = (*0 subgoals vs 1 or more*)
+          take_prefix (fn brl => subgoals_of_brl brl=0)
+             (joinrules(safeIs, safeEs))
+  in CS{safeIs = safeIs, 
+        safeEs = safeEs,
+	hazIs = hazIs,
+	hazEs = hazEs,
+	safe0_netpair = build_netpair safe0_brls,
+	safep_netpair = build_netpair safep_brls,
+	haz_netpair = build_netpair (joinrules(hazIs, hazEs))}
+  end;
+
+(*** Manipulation of clasets ***)
+
+val empty_cs = make_cs{safeIs=[], safeEs=[], hazIs=[], hazEs=[]};
+
+fun print_cs (CS{safeIs,safeEs,hazIs,hazEs,...}) =
+ (writeln"Introduction rules";  prths hazIs;
+  writeln"Safe introduction rules";  prths safeIs;
+  writeln"Elimination rules";  prths hazEs;
+  writeln"Safe elimination rules";  prths safeEs;
+  ());
+
+fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSIs ths =
+  make_cs {safeIs=ths@safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs};
+
+fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSEs ths =
+  make_cs {safeIs=safeIs, safeEs=ths@safeEs, hazIs=hazIs, hazEs=hazEs};
+
+fun cs addSDs ths = cs addSEs (map make_elim ths);
+
+fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addIs ths =
+  make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=ths@hazIs, hazEs=hazEs};
+
+fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addEs ths =
+  make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=ths@hazEs};
+
+fun cs addDs ths = cs addEs (map make_elim ths);
+
+(*** Simple tactics for theorem proving ***)
+
+(*Attack subgoals using safe inferences -- matching, not resolution*)
+fun safe_step_tac (CS{safe0_netpair,safep_netpair,...}) = 
+  FIRST' [eq_assume_tac,
+	  eq_mp_tac,
+	  bimatch_from_nets_tac safe0_netpair,
+	  FIRST' hyp_subst_tacs,
+	  bimatch_from_nets_tac safep_netpair] ;
+
+(*Repeatedly attack subgoals using safe inferences -- it's deterministic!*)
+fun safe_tac cs = DETERM (REPEAT_FIRST (safe_step_tac cs));
+
+(*These steps could instantiate variables and are therefore unsafe.*)
+fun inst_step_tac (CS{safe0_netpair,safep_netpair,...}) =
+  assume_tac 			  APPEND' 
+  contr_tac 			  APPEND' 
+  biresolve_from_nets_tac safe0_netpair APPEND' 
+  biresolve_from_nets_tac safep_netpair;
+
+(*Single step for the prover.  FAILS unless it makes progress. *)
+fun step_tac (cs as (CS{haz_netpair,...})) i = 
+  FIRST [safe_tac cs,
+         inst_step_tac cs i,
+         biresolve_from_nets_tac haz_netpair i];
+
+(*Using a "safe" rule to instantiate variables is unsafe.  This tactic
+  allows backtracking from "safe" rules to "unsafe" rules here.*)
+fun slow_step_tac (cs as (CS{haz_netpair,...})) i = 
+    safe_tac cs ORELSE 
+    (inst_step_tac cs i APPEND biresolve_from_nets_tac haz_netpair i);
+
+(*** The following tactics all fail unless they solve one goal ***)
+
+(*Dumb but fast*)
+fun fast_tac cs = SELECT_GOAL (DEPTH_SOLVE (step_tac cs 1));
+
+(*Slower but smarter than fast_tac*)
+fun best_tac cs = 
+  SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (step_tac cs 1));
+
+fun slow_tac cs = SELECT_GOAL (DEPTH_SOLVE (slow_step_tac cs 1));
+
+fun slow_best_tac cs = 
+  SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (slow_step_tac cs 1));
+
+end; 
+end;