src/Pure/drule.ML
changeset 0 a5a9c433f639
child 11 d0e17c42dbb4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/drule.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,465 @@
+(*  Title: 	drule
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Derived rules and other operations on theorems and theories
+*)
+
+infix 0 RS RSN RL RLN COMP;
+
+signature DRULE =
+  sig
+  structure Thm : THM
+  local open Thm  in
+  val asm_rl: thm
+  val assume_ax: theory -> string -> thm
+  val COMP: thm * thm -> thm
+  val compose: thm * int * thm -> thm list
+  val cterm_instantiate: (Sign.cterm*Sign.cterm)list -> thm -> thm
+  val cut_rl: thm
+  val equal_abs_elim: Sign.cterm  -> thm -> thm
+  val equal_abs_elim_list: Sign.cterm list -> thm -> thm
+  val eq_sg: Sign.sg * Sign.sg -> bool
+  val eq_thm: thm * thm -> bool
+  val eq_thm_sg: thm * thm -> bool
+  val flexpair_abs_elim_list: Sign.cterm list -> thm -> thm
+  val forall_intr_list: Sign.cterm list -> thm -> thm
+  val forall_intr_frees: thm -> thm
+  val forall_elim_list: Sign.cterm list -> thm -> thm
+  val forall_elim_var: int -> thm -> thm
+  val forall_elim_vars: int -> thm -> thm
+  val implies_elim_list: thm -> thm list -> thm
+  val implies_intr_list: Sign.cterm list -> thm -> thm
+  val print_cterm: Sign.cterm -> unit
+  val print_ctyp: Sign.ctyp -> unit
+  val print_goals: int -> thm -> unit
+  val print_sg: Sign.sg -> unit
+  val print_theory: theory -> unit
+  val pprint_sg: Sign.sg -> pprint_args -> unit
+  val pprint_theory: theory -> pprint_args -> unit
+  val print_thm: thm -> unit
+  val prth: thm -> thm
+  val prthq: thm Sequence.seq -> thm Sequence.seq
+  val prths: thm list -> thm list
+  val read_instantiate: (string*string)list -> thm -> thm
+  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
+  val reflexive_thm: thm
+  val revcut_rl: thm
+  val rewrite_goal_rule: (meta_simpset -> thm -> thm option) -> meta_simpset ->
+        int -> thm -> thm
+  val rewrite_goals_rule: thm list -> thm -> thm
+  val rewrite_rule: thm list -> thm -> thm
+  val RS: thm * thm -> thm
+  val RSN: thm * (int * thm) -> thm
+  val RL: thm list * thm list -> thm list
+  val RLN: thm list * (int * thm list) -> thm list
+  val show_hyps: bool ref
+  val size_of_thm: thm -> int
+  val standard: thm -> thm
+  val string_of_thm: thm -> string
+  val symmetric_thm: thm
+  val pprint_thm: thm -> pprint_args -> unit
+  val transitive_thm: thm
+  val triv_forall_equality: thm
+  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
+  val zero_var_indexes: thm -> thm
+  end
+  end;
+
+functor DruleFun (structure Logic: LOGIC and Thm: THM) : DRULE = 
+struct
+structure Thm = Thm;
+structure Sign = Thm.Sign;
+structure Type = Sign.Type;
+structure Pretty = Sign.Syntax.Pretty
+local open Thm
+in
+
+(**** More derived rules and operations on theorems ****)
+
+(*** Find the type (sort) associated with a (T)Var or (T)Free in a term 
+     Used for establishing default types (of variables) and sorts (of
+     type variables) when reading another term.
+     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
+***)
+
+fun types_sorts thm =
+    let val {prop,hyps,...} = rep_thm thm;
+	val big = list_comb(prop,hyps); (* bogus term! *)
+	val vars = map dest_Var (term_vars big);
+	val frees = map dest_Free (term_frees big);
+	val tvars = term_tvars big;
+	val tfrees = term_tfrees big;
+	fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
+	fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
+    in (typ,sort) end;
+
+(** Standardization of rules **)
+
+(*Generalization over a list of variables, IGNORING bad ones*)
+fun forall_intr_list [] th = th
+  | forall_intr_list (y::ys) th =
+	let val gth = forall_intr_list ys th
+	in  forall_intr y gth   handle THM _ =>  gth  end;
+
+(*Generalization over all suitable Free variables*)
+fun forall_intr_frees th =
+    let val {prop,sign,...} = rep_thm th
+    in  forall_intr_list
+         (map (Sign.cterm_of sign) (sort atless (term_frees prop))) 
+         th
+    end;
+
+(*Replace outermost quantified variable by Var of given index.
+    Could clash with Vars already present.*)
+fun forall_elim_var i th = 
+    let val {prop,sign,...} = rep_thm th
+    in case prop of
+	  Const("all",_) $ Abs(a,T,_) =>
+	      forall_elim (Sign.cterm_of sign (Var((a,i), T)))  th
+	| _ => raise THM("forall_elim_var", i, [th])
+    end;
+
+(*Repeat forall_elim_var until all outer quantifiers are removed*)
+fun forall_elim_vars i th = 
+    forall_elim_vars i (forall_elim_var i th)
+	handle THM _ => th;
+
+(*Specialization over a list of cterms*)
+fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
+
+(* maps [A1,...,An], B   to   [| A1;...;An |] ==> B  *)
+fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
+
+(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
+fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
+
+(*Reset Var indexes to zero, renaming to preserve distinctness*)
+fun zero_var_indexes th = 
+    let val {prop,sign,...} = rep_thm th;
+        val vars = term_vars prop
+        val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
+	val inrs = add_term_tvars(prop,[]);
+	val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
+	val tye = map (fn ((v,rs),a) => (v, TVar((a,0),rs))) (inrs ~~ nms')
+	val ctye = map (fn (v,T) => (v,Sign.ctyp_of sign T)) tye;
+	fun varpairs([],[]) = []
+	  | varpairs((var as Var(v,T)) :: vars, b::bs) =
+		let val T' = typ_subst_TVars tye T
+		in (Sign.cterm_of sign (Var(v,T')),
+		    Sign.cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
+		end
+	  | varpairs _ = raise TERM("varpairs", []);
+    in instantiate (ctye, varpairs(vars,rev bs)) th end;
+
+
+(*Standard form of object-rule: no hypotheses, Frees, or outer quantifiers;
+    all generality expressed by Vars having index 0.*)
+fun standard th =
+    let val {maxidx,...} = rep_thm th
+    in  varifyT (zero_var_indexes (forall_elim_vars(maxidx+1) 
+                         (forall_intr_frees(implies_intr_hyps th))))
+    end;
+
+(*Assume a new formula, read following the same conventions as axioms. 
+  Generalizes over Free variables,
+  creates the assumption, and then strips quantifiers.
+  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
+	     [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
+fun assume_ax thy sP =
+    let val sign = sign_of thy
+	val prop = Logic.close_form (Sign.term_of (Sign.read_cterm sign
+			 (sP, propT)))
+    in forall_elim_vars 0 (assume (Sign.cterm_of sign prop))  end;
+
+(*Resolution: exactly one resolvent must be produced.*) 
+fun tha RSN (i,thb) =
+  case Sequence.chop (2, biresolution false [(false,tha)] i thb) of
+      ([th],_) => th
+    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
+    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
+
+(*resolution: P==>Q, Q==>R gives P==>R. *)
+fun tha RS thb = tha RSN (1,thb);
+
+(*For joining lists of rules*)
+fun thas RLN (i,thbs) = 
+  let val resolve = biresolution false (map (pair false) thas) i
+      fun resb thb = Sequence.list_of_s (resolve thb) handle THM _ => []
+  in  flat (map resb thbs)  end;
+
+fun thas RL thbs = thas RLN (1,thbs);
+
+(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R 
+  with no lifting or renaming!  Q may contain ==> or meta-quants
+  ALWAYS deletes premise i *)
+fun compose(tha,i,thb) = 
+    Sequence.list_of_s (bicompose false (false,tha,0) i thb);
+
+(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
+fun tha COMP thb =
+    case compose(tha,1,thb) of
+        [th] => th  
+      | _ =>   raise THM("COMP", 1, [tha,thb]);
+
+(*Instantiate theorem th, reading instantiations under signature sg*)
+fun read_instantiate_sg sg sinsts th =
+    let val ts = types_sorts th;
+        val instpair = Sign.read_insts sg ts ts sinsts
+    in  instantiate instpair th  end;
+
+(*Instantiate theorem th, reading instantiations under theory of th*)
+fun read_instantiate sinsts th =
+    read_instantiate_sg (#sign (rep_thm th)) sinsts th;
+
+
+(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
+  Instantiates distinct Vars by terms, inferring type instantiations. *)
+local
+  fun add_types ((ct,cu), (sign,tye)) =
+    let val {sign=signt, t=t, T= T, ...} = Sign.rep_cterm ct
+        and {sign=signu, t=u, T= U, ...} = Sign.rep_cterm cu
+        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
+	val tye' = Type.unify (#tsig(Sign.rep_sg sign')) ((T,U), tye)
+	  handle Type.TUNIFY => raise TYPE("add_types", [T,U], [t,u])
+    in  (sign', tye')  end;
+in
+fun cterm_instantiate ctpairs0 th = 
+  let val (sign,tye) = foldr add_types (ctpairs0, (#sign(rep_thm th),[]))
+      val tsig = #tsig(Sign.rep_sg sign);
+      fun instT(ct,cu) = let val inst = subst_TVars tye
+			 in (Sign.cfun inst ct, Sign.cfun inst cu) end
+      fun ctyp2 (ix,T) = (ix, Sign.ctyp_of sign T)
+  in  instantiate (map ctyp2 tye, map instT ctpairs0) th  end
+  handle TERM _ => 
+           raise THM("cterm_instantiate: incompatible signatures",0,[th])
+       | TYPE _ => raise THM("cterm_instantiate: types", 0, [th])
+end;
+
+
+(*** Printing of theorems ***)
+
+(*If false, hypotheses are printed as dots*)
+val show_hyps = ref true;
+
+fun pretty_thm th =
+let val {sign, hyps, prop,...} = rep_thm th
+    val hsymbs = if null hyps then []
+		 else if !show_hyps then
+		      [Pretty.brk 2,
+		       Pretty.lst("[","]") (map (Sign.pretty_term sign) hyps)]
+		 else Pretty.str" [" :: map (fn _ => Pretty.str".") hyps @
+		      [Pretty.str"]"];
+in Pretty.blk(0, Sign.pretty_term sign prop :: hsymbs) end;
+
+val string_of_thm = Pretty.string_of o pretty_thm;
+
+val pprint_thm = Pretty.pprint o Pretty.quote o pretty_thm;
+
+
+(** Top-level commands for printing theorems **)
+val print_thm = writeln o string_of_thm;
+
+fun prth th = (print_thm th; th);
+
+(*Print and return a sequence of theorems, separated by blank lines. *)
+fun prthq thseq =
+    (Sequence.prints (fn _ => print_thm) 100000 thseq;
+     thseq);
+
+(*Print and return a list of theorems, separated by blank lines. *)
+fun prths ths = (print_list_ln print_thm ths; ths);
+
+(*Other printing commands*)
+val print_cterm = writeln o Sign.string_of_cterm;
+val print_ctyp = writeln o Sign.string_of_ctyp;
+fun pretty_sg sg = 
+  Pretty.lst ("{", "}") (map (Pretty.str o !) (#stamps (Sign.rep_sg sg)));
+
+val pprint_sg = Pretty.pprint o pretty_sg;
+
+val pprint_theory = pprint_sg o sign_of;
+
+val print_sg = writeln o Pretty.string_of o pretty_sg;
+val print_theory = print_sg o sign_of;
+
+
+(** Print thm A1,...,An/B in "goal style" -- premises as numbered subgoals **)
+
+fun prettyprints es = writeln(Pretty.string_of(Pretty.blk(0,es)));
+
+fun print_goals maxgoals th : unit =
+let val {sign, hyps, prop,...} = rep_thm th;
+    fun printgoals (_, []) = ()
+      | printgoals (n, A::As) =
+	let val prettyn = Pretty.str(" " ^ string_of_int n ^ ". ");
+	    val prettyA = Sign.pretty_term sign A
+	in prettyprints[prettyn,prettyA]; 
+           printgoals (n+1,As) 
+        end;
+    fun prettypair(t,u) =
+        Pretty.blk(0, [Sign.pretty_term sign t, Pretty.str" =?=", Pretty.brk 1,
+		       Sign.pretty_term sign u]);
+    fun printff [] = ()
+      | printff tpairs =
+	 writeln("\nFlex-flex pairs:\n" ^
+		 Pretty.string_of(Pretty.lst("","") (map prettypair tpairs)))
+    val (tpairs,As,B) = Logic.strip_horn(prop);
+    val ngoals = length As
+in 
+   writeln (Sign.string_of_term sign B);
+   if ngoals=0 then writeln"No subgoals!"
+   else if ngoals>maxgoals 
+        then (printgoals (1, take(maxgoals,As));
+	      writeln("A total of " ^ string_of_int ngoals ^ " subgoals..."))
+        else printgoals (1, As);
+   printff tpairs
+end;
+
+
+(** theorem equality test is exported and used by BEST_FIRST **)
+
+(*equality of signatures means exact identity -- by ref equality*)
+fun eq_sg (sg1,sg2) = (#stamps(Sign.rep_sg sg1) = #stamps(Sign.rep_sg sg2));
+
+(*equality of theorems uses equality of signatures and 
+  the a-convertible test for terms*)
+fun eq_thm (th1,th2) = 
+    let val {sign=sg1, hyps=hyps1, prop=prop1, ...} = rep_thm th1
+	and {sign=sg2, hyps=hyps2, prop=prop2, ...} = rep_thm th2
+    in  eq_sg (sg1,sg2) andalso 
+        aconvs(hyps1,hyps2) andalso 
+        prop1 aconv prop2  
+    end;
+
+(*Do the two theorems have the same signature?*)
+fun eq_thm_sg (th1,th2) = eq_sg(#sign(rep_thm th1), #sign(rep_thm th2));
+
+(*Useful "distance" function for BEST_FIRST*)
+val size_of_thm = size_of_term o #prop o rep_thm;
+
+
+(*** Meta-Rewriting Rules ***)
+
+
+val reflexive_thm =
+  let val cx = Sign.cterm_of Sign.pure (Var(("x",0),TVar(("'a",0),["logic"])))
+  in Thm.reflexive cx end;
+
+val symmetric_thm =
+  let val xy = Sign.read_cterm Sign.pure ("x::'a::logic == y",propT)
+  in standard(Thm.implies_intr_hyps(Thm.symmetric(Thm.assume xy))) end;
+
+val transitive_thm =
+  let val xy = Sign.read_cterm Sign.pure ("x::'a::logic == y",propT)
+      val yz = Sign.read_cterm Sign.pure ("y::'a::logic == z",propT)
+      val xythm = Thm.assume xy and yzthm = Thm.assume yz
+  in standard(Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
+
+
+(** Below, a "conversion" has type sign->term->thm **)
+
+(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
+fun goals_conv pred cv sign = 
+  let val triv = reflexive o Sign.cterm_of sign
+      fun gconv i t =
+        let val (A,B) = Logic.dest_implies t
+	    val thA = if (pred i) then (cv sign A) else (triv A)
+	in  combination (combination (triv implies) thA)
+                        (gconv (i+1) B)
+        end
+        handle TERM _ => triv t
+  in gconv 1 end;
+
+(*Use a conversion to transform a theorem*)
+fun fconv_rule cv th =
+  let val {sign,prop,...} = rep_thm th
+  in  equal_elim (cv sign prop) th  end;
+
+(*rewriting conversion*)
+fun rew_conv prover mss sign t =
+  rewrite_cterm mss prover (Sign.cterm_of sign t);
+
+(*Rewrite a theorem*)
+fun rewrite_rule thms = fconv_rule (rew_conv (K(K None)) (Thm.mss_of thms));
+
+(*Rewrite the subgoals of a proof state (represented by a theorem) *)
+fun rewrite_goals_rule thms =
+  fconv_rule (goals_conv (K true) (rew_conv (K(K None)) (Thm.mss_of thms)));
+
+(*Rewrite the subgoal of a proof state (represented by a theorem) *)
+fun rewrite_goal_rule prover mss i =
+      fconv_rule (goals_conv (fn j => j=i) (rew_conv prover mss));
+
+
+(** Derived rules mainly for METAHYPS **)
+
+(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
+fun equal_abs_elim ca eqth =
+  let val {sign=signa, t=a, ...} = Sign.rep_cterm ca
+      and combth = combination eqth (reflexive ca)
+      val {sign,prop,...} = rep_thm eqth
+      val (abst,absu) = Logic.dest_equals prop
+      val cterm = Sign.cterm_of (Sign.merge (sign,signa))
+  in  transitive (symmetric (beta_conversion (cterm (abst$a))))
+           (transitive combth (beta_conversion (cterm (absu$a))))
+  end
+  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
+
+(*Calling equal_abs_elim with multiple terms*)
+fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
+
+local
+  open Logic
+  val alpha = TVar(("'a",0), [])     (*  type ?'a::{}  *)
+  fun err th = raise THM("flexpair_inst: ", 0, [th])
+  fun flexpair_inst def th =
+    let val {prop = Const _ $ t $ u,  sign,...} = rep_thm th
+	val cterm = Sign.cterm_of sign
+	fun cvar a = cterm(Var((a,0),alpha))
+	val def' = cterm_instantiate [(cvar"t", cterm t), (cvar"u", cterm u)] 
+		   def
+    in  equal_elim def' th
+    end
+    handle THM _ => err th | bind => err th
+in
+val flexpair_intr = flexpair_inst (symmetric flexpair_def)
+and flexpair_elim = flexpair_inst flexpair_def
+end;
+
+(*Version for flexflex pairs -- this supports lifting.*)
+fun flexpair_abs_elim_list cts = 
+    flexpair_intr o equal_abs_elim_list cts o flexpair_elim;
+
+
+(*** Some useful meta-theorems ***)
+
+(*The rule V/V, obtains assumption solving for eresolve_tac*)
+val asm_rl = trivial(Sign.read_cterm Sign.pure ("PROP ?psi",propT));
+
+(*Meta-level cut rule: [| V==>W; V |] ==> W *)
+val cut_rl = trivial(Sign.read_cterm Sign.pure 
+	("PROP ?psi ==> PROP ?theta", propT));
+
+(*Generalized elim rule for one conclusion; cut_rl with reversed premises: 
+     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
+val revcut_rl =
+  let val V = Sign.read_cterm Sign.pure ("PROP V", propT)
+      and VW = Sign.read_cterm Sign.pure ("PROP V ==> PROP W", propT);
+  in  standard (implies_intr V 
+		(implies_intr VW
+		 (implies_elim (assume VW) (assume V))))
+  end;
+
+(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
+val triv_forall_equality =
+  let val V  = Sign.read_cterm Sign.pure ("PROP V", propT)
+      and QV = Sign.read_cterm Sign.pure ("!!x::'a. PROP V", propT)
+      and x  = Sign.read_cterm Sign.pure ("x", TFree("'a",["logic"]));
+  in  standard (equal_intr (implies_intr QV (forall_elim x (assume QV)))
+		           (implies_intr V  (forall_intr x (assume V))))
+  end;
+
+end
+end;