src/ZF/ex/misc.ML
changeset 0 a5a9c433f639
child 7 268f93ab3bc4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/ex/misc.ML	Thu Sep 16 12:20:38 1993 +0200
@@ -0,0 +1,213 @@
+(*  Title: 	ZF/ex/misc
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Miscellaneous examples for Zermelo-Fraenkel Set Theory 
+Cantor's Theorem; Schroeder-Bernstein Theorem; Composition of homomorphisms...
+*)
+
+writeln"ZF/ex/misc";
+
+
+(*Example 12 (credited to Peter Andrews) from
+ W. Bledsoe.  A Maximal Method for Set Variables in Automatic Theorem-proving.
+ In: J. Hayes and D. Michie and L. Mikulich, eds.  Machine Intelligence 9.
+ Ellis Horwood, 53-100 (1979). *)
+goal ZF.thy "(ALL F. {x}: F --> {y}:F) --> (ALL A. x:A --> y:A)";
+by (best_tac ZF_cs 1);
+result();
+
+
+(*** Cantor's Theorem: There is no surjection from a set to its powerset. ***)
+
+val cantor_cs = FOL_cs   (*precisely the rules needed for the proof*)
+  addSIs [ballI, CollectI, PowI, subsetI] addIs [bexI]
+  addSEs [CollectE, equalityCE];
+
+(*The search is undirected and similar proof attempts fail*)
+goal ZF.thy "ALL f: A->Pow(A). EX S: Pow(A). ALL x:A. ~ f`x = S";
+by (best_tac cantor_cs 1);
+result();
+
+(*This form displays the diagonal term, {x: A . ~ x: f`x} *)
+val [prem] = goal ZF.thy
+    "f: A->Pow(A) ==> (ALL x:A. ~ f`x = ?S) & ?S: Pow(A)";
+by (best_tac cantor_cs 1);
+result();
+
+(*yet another version...*)
+goalw Perm.thy [surj_def] "~ f : surj(A,Pow(A))";
+by (safe_tac ZF_cs);
+by (etac ballE 1);
+by (best_tac (cantor_cs addSEs [bexE]) 1);
+by (fast_tac ZF_cs 1);
+result();
+
+
+(**** The Schroeder-Bernstein Theorem -- see Davey & Priestly, page 106 ****)
+
+val SB_thy = merge_theories (Fixedpt.thy, Perm.thy);
+
+(** Lemma: Banach's Decomposition Theorem **)
+
+goal SB_thy "bnd_mono(X, %W. X - g``(Y - f``W))";
+by (rtac bnd_monoI 1);
+by (REPEAT (ares_tac [Diff_subset, subset_refl, Diff_mono, image_mono] 1));
+val decomp_bnd_mono = result();
+
+val [gfun] = goal SB_thy
+    "g: Y->X ==>   					\
+\    g``(Y - f`` lfp(X, %W. X - g``(Y - f``W))) = 	\
+\    X - lfp(X, %W. X - g``(Y - f``W)) ";
+by (res_inst_tac [("P", "%u. ?v = X-u")] 
+     (decomp_bnd_mono RS lfp_Tarski RS ssubst) 1);
+by (SIMP_TAC (ZF_ss addrews [subset_refl, double_complement, Diff_subset,
+			     gfun RS fun_is_rel RS image_subset]) 1);
+val Banach_last_equation = result();
+
+val prems = goal SB_thy
+    "[| f: X->Y;  g: Y->X |] ==>   \
+\    EX XA XB YA YB. (XA Int XB = 0) & (XA Un XB = X) &    \
+\                    (YA Int YB = 0) & (YA Un YB = Y) &    \
+\                    f``XA=YA & g``YB=XB";
+by (REPEAT 
+    (FIRSTGOAL
+     (resolve_tac [refl, exI, conjI, Diff_disjoint, Diff_partition])));
+by (rtac Banach_last_equation 3);
+by (REPEAT (resolve_tac (prems@[fun_is_rel, image_subset, lfp_subset]) 1));
+val decomposition = result();
+
+val prems = goal SB_thy
+    "[| f: inj(X,Y);  g: inj(Y,X) |] ==> EX h. h: bij(X,Y)";
+by (cut_facts_tac prems 1);
+by (cut_facts_tac [(prems RL [inj_is_fun]) MRS decomposition] 1);
+by (fast_tac (ZF_cs addSIs [restrict_bij,bij_disjoint_Un]
+                    addIs [bij_converse_bij]) 1);
+(* The instantiation of exI to "restrict(f,XA) Un converse(restrict(g,YB))"
+   is forced by the context!! *)
+val schroeder_bernstein = result();
+
+
+(*** Composition of homomorphisms is a homomorphism ***)
+
+(*Given as a challenge problem in
+  R. Boyer et al.,
+  Set Theory in First-Order Logic: Clauses for G\"odel's Axioms,
+  JAR 2 (1986), 287-327 
+*)
+
+val hom_ss =   (*collecting the relevant lemmas*)
+  ZF_ss addrews [comp_func,comp_func_apply,SigmaI,apply_type]
+   	addcongs (mk_congs Perm.thy ["op O"]);
+
+(*This version uses a super application of SIMP_TAC;  it is SLOW
+  Expressing the goal by --> instead of ==> would make it slower still*)
+val [hom_eq] = goal Perm.thy
+    "(ALL A f B g. hom(A,f,B,g) = \
+\          {H: A->B. f:A*A->A & g:B*B->B & \
+\                    (ALL x:A. ALL y:A. H`(f`<x,y>) = g`<H`x,H`y>)}) ==> \
+\    J : hom(A,f,B,g) & K : hom(B,g,C,h) -->  \
+\    (K O J) : hom(A,f,C,h)";
+by (SIMP_TAC (hom_ss setauto K(fast_tac prop_cs) addrews [hom_eq]) 1);
+val comp_homs = result();
+
+(*This version uses meta-level rewriting, safe_tac and ASM_SIMP_TAC*)
+val [hom_def] = goal Perm.thy
+    "(!! A f B g. hom(A,f,B,g) == \
+\          {H: A->B. f:A*A->A & g:B*B->B & \
+\                    (ALL x:A. ALL y:A. H`(f`<x,y>) = g`<H`x,H`y>)}) ==> \
+\    J : hom(A,f,B,g) & K : hom(B,g,C,h) -->  \
+\    (K O J) : hom(A,f,C,h)";
+by (rewtac hom_def);
+by (safe_tac ZF_cs);
+by (ASM_SIMP_TAC hom_ss 1);
+by (ASM_SIMP_TAC hom_ss 1);
+val comp_homs = result();
+
+
+(** A characterization of functions, suggested by Tobias Nipkow **)
+
+goalw ZF.thy [Pi_def]
+    "r: domain(r)->B  <->  r <= domain(r)*B & (ALL X. r `` (r -`` X) <= X)";
+by (safe_tac ZF_cs);
+by (fast_tac (ZF_cs addSDs [bspec RS ex1_equalsE]) 1);
+by (eres_inst_tac [("x", "{y}")] allE 1);
+by (fast_tac ZF_cs 1);
+result();
+
+
+(**** From D Pastre.  Automatic theorem proving in set theory. 
+         Artificial Intelligence, 10:1--27, 1978.
+             These examples require forward reasoning! ****)
+
+(*reduce the clauses to units by type checking -- beware of nontermination*)
+fun forw_typechk tyrls [] = []
+  | forw_typechk tyrls clauses =
+    let val (units, others) = partition (has_fewer_prems 1) clauses
+    in  gen_union eq_thm (units, forw_typechk tyrls (tyrls RL others))
+    end;
+
+(*A crude form of forward reasoning*)
+fun forw_iterate tyrls rls facts 0 = facts
+  | forw_iterate tyrls rls facts n =
+      let val facts' = 
+	  gen_union eq_thm (forw_typechk (tyrls@facts) (facts RL rls), facts);
+      in  forw_iterate tyrls rls facts' (n-1)  end;
+
+val pastre_rls =
+    [comp_mem_injD1, comp_mem_surjD1, comp_mem_injD2, comp_mem_surjD2];
+
+fun pastre_facts (fact1::fact2::fact3::prems) = 
+    forw_iterate (prems @ [comp_surj, comp_inj, comp_func])
+               pastre_rls [fact1,fact2,fact3] 4;
+
+val prems = goalw Perm.thy [bij_def]
+    "[| (h O g O f): inj(A,A);		\
+\       (f O h O g): surj(B,B); 	\
+\       (g O f O h): surj(C,C); 	\
+\       f: A->B;  g: B->C;  h: C->A |] ==> h: bij(C,A)";
+by (REPEAT (resolve_tac (IntI :: pastre_facts prems) 1));
+val pastre1 = result();
+
+val prems = goalw Perm.thy [bij_def]
+    "[| (h O g O f): surj(A,A);		\
+\       (f O h O g): inj(B,B); 		\
+\       (g O f O h): surj(C,C); 	\
+\       f: A->B;  g: B->C;  h: C->A |] ==> h: bij(C,A)";
+by (REPEAT (resolve_tac (IntI :: pastre_facts prems) 1));
+val pastre2 = result();
+
+val prems = goalw Perm.thy [bij_def]
+    "[| (h O g O f): surj(A,A);		\
+\       (f O h O g): surj(B,B); 	\
+\       (g O f O h): inj(C,C); 		\
+\       f: A->B;  g: B->C;  h: C->A |] ==> h: bij(C,A)";
+by (REPEAT (resolve_tac (IntI :: pastre_facts prems) 1));
+val pastre3 = result();
+
+val prems = goalw Perm.thy [bij_def]
+    "[| (h O g O f): surj(A,A);		\
+\       (f O h O g): inj(B,B); 		\
+\       (g O f O h): inj(C,C); 		\
+\       f: A->B;  g: B->C;  h: C->A |] ==> h: bij(C,A)";
+by (REPEAT (resolve_tac (IntI :: pastre_facts prems) 1));
+val pastre4 = result();
+
+val prems = goalw Perm.thy [bij_def]
+    "[| (h O g O f): inj(A,A);		\
+\       (f O h O g): surj(B,B); 	\
+\       (g O f O h): inj(C,C); 		\
+\       f: A->B;  g: B->C;  h: C->A |] ==> h: bij(C,A)";
+by (REPEAT (resolve_tac (IntI :: pastre_facts prems) 1));
+val pastre5 = result();
+
+val prems = goalw Perm.thy [bij_def]
+    "[| (h O g O f): inj(A,A);		\
+\       (f O h O g): inj(B,B); 		\
+\       (g O f O h): surj(C,C); 	\
+\       f: A->B;  g: B->C;  h: C->A |] ==> h: bij(C,A)";
+by (REPEAT (resolve_tac (IntI :: pastre_facts prems) 1));
+val pastre6 = result();
+
+writeln"Reached end of file.";