--- a/src/ZF/UNITY/ClientImpl.thy Tue Sep 27 17:03:23 2022 +0100
+++ b/src/ZF/UNITY/ClientImpl.thy Tue Sep 27 17:46:52 2022 +0100
@@ -26,7 +26,7 @@
definition
(** Release some client_tokens **)
"client_rel_act \<equiv>
- {<s,t> \<in> state*state.
+ {\<langle>s,t\<rangle> \<in> state*state.
\<exists>nrel \<in> nat. nrel = length(s`rel) \<and>
t = s(rel:=(s`rel)@[nth(nrel, s`giv)]) \<and>
nrel < length(s`giv) \<and>
@@ -36,11 +36,11 @@
(** Including t=s suppresses fairness, allowing the non-trivial part
of the action to be ignored **)
definition
- "client_tok_act \<equiv> {<s,t> \<in> state*state. t=s |
+ "client_tok_act \<equiv> {\<langle>s,t\<rangle> \<in> state*state. t=s |
t = s(tok:=succ(s`tok mod NbT))}"
definition
- "client_ask_act \<equiv> {<s,t> \<in> state*state. t=s | (t=s(ask:=s`ask@[s`tok]))}"
+ "client_ask_act \<equiv> {\<langle>s,t\<rangle> \<in> state*state. t=s | (t=s(ask:=s`ask@[s`tok]))}"
definition
"client_prog \<equiv>
@@ -178,15 +178,15 @@
by (force intro!: AlwaysI client_prog_Join_Stable_rel_le_giv)
lemma def_act_eq:
- "A \<equiv> {<s, t> \<in> state*state. P(s, t)} \<Longrightarrow> A={<s, t> \<in> state*state. P(s, t)}"
+ "A \<equiv> {\<langle>s, t\<rangle> \<in> state*state. P(s, t)} \<Longrightarrow> A={\<langle>s, t\<rangle> \<in> state*state. P(s, t)}"
by auto
-lemma act_subset: "A={<s,t> \<in> state*state. P(s, t)} \<Longrightarrow> A<=state*state"
+lemma act_subset: "A={\<langle>s,t\<rangle> \<in> state*state. P(s, t)} \<Longrightarrow> A<=state*state"
by auto
lemma transient_lemma:
"client_prog \<in>
- transient({s \<in> state. s`rel = k \<and> <k, h> \<in> strict_prefix(nat)
+ transient({s \<in> state. s`rel = k \<and> \<langle>k, h\<rangle> \<in> strict_prefix(nat)
\<and> <h, s`giv> \<in> prefix(nat) \<and> h pfixGe s`ask})"
apply (rule_tac act = client_rel_act in transientI)
apply (simp (no_asm) add: client_prog_def [THEN def_prg_Acts])
@@ -209,7 +209,7 @@
done
lemma strict_prefix_is_prefix:
- "<xs, ys> \<in> strict_prefix(A) \<longleftrightarrow> <xs, ys> \<in> prefix(A) \<and> xs\<noteq>ys"
+ "\<langle>xs, ys\<rangle> \<in> strict_prefix(A) \<longleftrightarrow> \<langle>xs, ys\<rangle> \<in> prefix(A) \<and> xs\<noteq>ys"
apply (unfold strict_prefix_def id_def lam_def)
apply (auto dest: prefix_type [THEN subsetD])
done
@@ -217,7 +217,7 @@
lemma induct_lemma:
"\<lbrakk>client_prog \<squnion> G \<in> Incr(lift(giv)); client_prog ok G; G \<in> program\<rbrakk>
\<Longrightarrow> client_prog \<squnion> G \<in>
- {s \<in> state. s`rel = k \<and> <k,h> \<in> strict_prefix(nat)
+ {s \<in> state. s`rel = k \<and> \<langle>k,h\<rangle> \<in> strict_prefix(nat)
\<and> <h, s`giv> \<in> prefix(nat) \<and> h pfixGe s`ask}
\<longmapsto>w {s \<in> state. <k, s`rel> \<in> strict_prefix(nat)
\<and> <s`rel, s`giv> \<in> prefix(nat) \<and>