src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
changeset 13515 a6a7025fd7e8
parent 12018 ec054019c910
child 13547 bf399f3bd7dc
--- a/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Thu Aug 22 12:28:41 2002 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Thu Aug 22 20:49:43 2002 +0200
@@ -17,17 +17,15 @@
   an element in @{text "E - H"}.  @{text H} is extended to the direct
   sum @{text "H' = H + lin x\<^sub>0"}, so for any @{text "x \<in> H'"}
   the decomposition of @{text "x = y + a \<cdot> x"} with @{text "y \<in> H"} is
-  unique. @{text h'} is defined on @{text H'} by
-  @{text "h' x = h y + a \<cdot> \<xi>"} for a certain @{text \<xi>}.
+  unique. @{text h'} is defined on @{text H'} by @{text "h' x = h y +
+  a \<cdot> \<xi>"} for a certain @{text \<xi>}.
 
   Subsequently we show some properties of this extension @{text h'} of
   @{text h}.
-*}
 
-text {*
-  This lemma will be used to show the existence of a linear extension
-  of @{text f} (see page \pageref{ex-xi-use}). It is a consequence of
-  the completeness of @{text \<real>}. To show
+  \medskip This lemma will be used to show the existence of a linear
+  extension of @{text f} (see page \pageref{ex-xi-use}). It is a
+  consequence of the completeness of @{text \<real>}. To show
   \begin{center}
   \begin{tabular}{l}
   @{text "\<exists>\<xi>. \<forall>y \<in> F. a y \<le> \<xi> \<and> \<xi> \<le> b y"}
@@ -42,307 +40,227 @@
 *}
 
 lemma ex_xi:
-  "is_vectorspace F \<Longrightarrow> (\<And>u v. u \<in> F \<Longrightarrow> v \<in> F \<Longrightarrow> a u \<le> b v)
-  \<Longrightarrow> \<exists>xi::real. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y"
+  includes vectorspace F
+  assumes r: "\<And>u v. u \<in> F \<Longrightarrow> v \<in> F \<Longrightarrow> a u \<le> b v"
+  shows "\<exists>xi::real. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y"
 proof -
-  assume vs: "is_vectorspace F"
-  assume r: "(\<And>u v. u \<in> F \<Longrightarrow> v \<in> F \<Longrightarrow> a u \<le> (b v::real))"
-
   txt {* From the completeness of the reals follows:
-  The set @{text "S = {a u. u \<in> F}"} has a supremum, if
-  it is non-empty and has an upper bound. *}
-
-  let ?S = "{a u :: real | u. u \<in> F}"
-
-  have "\<exists>xi. isLub UNIV ?S xi"
-  proof (rule reals_complete)
-
-    txt {* The set @{text S} is non-empty, since @{text "a 0 \<in> S"}: *}
-
-    from vs have "a 0 \<in> ?S" by blast
-    thus "\<exists>X. X \<in> ?S" ..
-
-    txt {* @{text "b 0"} is an upper bound of @{text S}: *}
-
-    show "\<exists>Y. isUb UNIV ?S Y"
-    proof
-      show "isUb UNIV ?S (b 0)"
-      proof (intro isUbI setleI ballI)
-        show "b 0 \<in> UNIV" ..
-      next
-
-        txt {* Every element @{text "y \<in> S"} is less than @{text "b 0"}: *}
+    The set @{text "S = {a u. u \<in> F}"} has a supremum, if it is
+    non-empty and has an upper bound. *}
 
-        fix y assume y: "y \<in> ?S"
-        from y have "\<exists>u \<in> F. y = a u" by fast
-        thus "y \<le> b 0"
-        proof
-          fix u assume "u \<in> F"
-          assume "y = a u"
-          also have "a u \<le> b 0" by (rule r) (simp!)+
-          finally show ?thesis .
-        qed
-      qed
+  let ?S = "{a u | u. u \<in> F}"
+  have "\<exists>xi. lub ?S xi"
+  proof (rule real_complete)
+    have "a 0 \<in> ?S" by blast
+    then show "\<exists>X. X \<in> ?S" ..
+    have "\<forall>y \<in> ?S. y \<le> b 0"
+    proof
+      fix y assume y: "y \<in> ?S"
+      then obtain u where u: "u \<in> F" and y: "y = a u" by blast
+      from u and zero have "a u \<le> b 0" by (rule r)
+      with y show "y \<le> b 0" by (simp only:)
     qed
+    then show "\<exists>u. \<forall>y \<in> ?S. y \<le> u" ..
   qed
-
-  thus "\<exists>xi. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y"
-  proof (elim exE)
-    fix xi assume "isLub UNIV ?S xi"
-    show ?thesis
-    proof (intro exI conjI ballI)
-
-      txt {* For all @{text "y \<in> F"} holds @{text "a y \<le> \<xi>"}: *}
-
-      fix y assume y: "y \<in> F"
-      show "a y \<le> xi"
-      proof (rule isUbD)
-        show "isUb UNIV ?S xi" ..
-      qed (blast!)
-    next
-
-      txt {* For all @{text "y \<in> F"} holds @{text "\<xi> \<le> b y"}: *}
-
-      fix y assume "y \<in> F"
-      show "xi \<le> b y"
-      proof (intro isLub_le_isUb isUbI setleI)
-        show "b y \<in> UNIV" ..
-        show "\<forall>ya \<in> ?S. ya \<le> b y"
-        proof
-          fix au assume au: "au \<in> ?S "
-          hence "\<exists>u \<in> F. au = a u" by fast
-          thus "au \<le> b y"
-          proof
-            fix u assume "u \<in> F" assume "au = a u"
-            also have "... \<le> b y" by (rule r)
-            finally show ?thesis .
-          qed
-        qed
-      qed
+  then obtain xi where xi: "lub ?S xi" ..
+  {
+    fix y assume "y \<in> F"
+    then have "a y \<in> ?S" by blast
+    with xi have "a y \<le> xi" by (rule lub.upper)
+  } moreover {
+    fix y assume y: "y \<in> F"
+    from xi have "xi \<le> b y"
+    proof (rule lub.least)
+      fix au assume "au \<in> ?S"
+      then obtain u where u: "u \<in> F" and au: "au = a u" by blast
+      from u y have "a u \<le> b y" by (rule r)
+      with au show "au \<le> b y" by (simp only:)
     qed
-  qed
+  } ultimately show "\<exists>xi. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y" by blast
 qed
 
 text {*
-  \medskip The function @{text h'} is defined as a
-  @{text "h' x = h y + a \<cdot> \<xi>"} where @{text "x = y + a \<cdot> \<xi>"} is a
-  linear extension of @{text h} to @{text H'}. *}
+  \medskip The function @{text h'} is defined as a @{text "h' x = h y
+  + a \<cdot> \<xi>"} where @{text "x = y + a \<cdot> \<xi>"} is a linear extension of
+  @{text h} to @{text H'}.
+*}
 
 lemma h'_lf:
-  "h' \<equiv> \<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi
-  \<Longrightarrow> H' \<equiv> H + lin x0 \<Longrightarrow> is_subspace H E \<Longrightarrow> is_linearform H h \<Longrightarrow> x0 \<notin> H
-  \<Longrightarrow> x0 \<in> E \<Longrightarrow> x0 \<noteq> 0 \<Longrightarrow> is_vectorspace E
-  \<Longrightarrow> is_linearform H' h'"
-proof -
-  assume h'_def:
-    "h' \<equiv> (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H
-               in h y + a * xi)"
+  includes var H + var h + var E
+  assumes h'_def: "h' \<equiv> \<lambda>x. let (y, a) =
+      SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi"
     and H'_def: "H' \<equiv> H + lin x0"
-    and vs: "is_subspace H E"  "is_linearform H h"  "x0 \<notin> H"
-      "x0 \<noteq> 0"  "x0 \<in> E"  "is_vectorspace E"
-
-  have h': "is_vectorspace H'"
-  proof (unfold H'_def, rule vs_sum_vs)
-    show "is_subspace (lin x0) E" ..
+    and HE: "H \<unlhd> E"
+  includes linearform H h
+  assumes x0: "x0 \<notin> H"  "x0 \<in> E"  "x0 \<noteq> 0"
+  includes vectorspace E
+  shows "linearform H' h'"
+proof
+  have H': "vectorspace H'"
+  proof (unfold H'_def)
+    have "x0 \<in> E" .
+    then have "lin x0 \<unlhd> E" ..
+    with HE show "vectorspace (H + lin x0)" ..
   qed
-
-  show ?thesis
-  proof
+  {
     fix x1 x2 assume x1: "x1 \<in> H'" and x2: "x2 \<in> H'"
-
-    txt {* We now have to show that @{text h'} is additive, i.~e.\
-      @{text "h' (x\<^sub>1 + x\<^sub>2) = h' x\<^sub>1 + h' x\<^sub>2"} for
-      @{text "x\<^sub>1, x\<^sub>2 \<in> H"}. *}
+    show "h' (x1 + x2) = h' x1 + h' x2"
+    proof -
+      from H' x1 x2 have "x1 + x2 \<in> H'"
+        by (rule vectorspace.add_closed)
+      with x1 x2 obtain y y1 y2 a a1 a2 where
+            x1x2: "x1 + x2 = y + a \<cdot> x0" and y: "y \<in> H"
+          and x1_rep: "x1 = y1 + a1 \<cdot> x0" and y1: "y1 \<in> H"
+          and x2_rep: "x2 = y2 + a2 \<cdot> x0" and y2: "y2 \<in> H"
+        by (unfold H'_def sum_def lin_def) blast
 
-    have x1x2: "x1 + x2 \<in> H'"
-      by (rule vs_add_closed, rule h')
-    from x1
-    have ex_x1: "\<exists>y1 a1. x1 = y1 + a1 \<cdot> x0  \<and> y1 \<in> H"
-      by (unfold H'_def vs_sum_def lin_def) fast
-    from x2
-    have ex_x2: "\<exists>y2 a2. x2 = y2 + a2 \<cdot> x0 \<and> y2 \<in> H"
-      by (unfold H'_def vs_sum_def lin_def) fast
-    from x1x2
-    have ex_x1x2: "\<exists>y a. x1 + x2 = y + a \<cdot> x0 \<and> y \<in> H"
-      by (unfold H'_def vs_sum_def lin_def) fast
-
-    from ex_x1 ex_x2 ex_x1x2
-    show "h' (x1 + x2) = h' x1 + h' x2"
-    proof (elim exE conjE)
-      fix y1 y2 y a1 a2 a
-      assume y1: "x1 = y1 + a1 \<cdot> x0"     and y1': "y1 \<in> H"
-         and y2: "x2 = y2 + a2 \<cdot> x0"     and y2': "y2 \<in> H"
-         and y: "x1 + x2 = y + a \<cdot> x0"   and y':  "y  \<in> H"
-      txt {* \label{decomp-H-use}*}
-      have ya: "y1 + y2 = y \<and> a1 + a2 = a"
-      proof (rule decomp_H')
-        show "y1 + y2 + (a1 + a2) \<cdot> x0 = y + a \<cdot> x0"
-          by (simp! add: vs_add_mult_distrib2 [of E])
-        show "y1 + y2 \<in> H" ..
+      have ya: "y1 + y2 = y \<and> a1 + a2 = a" using _ HE _ y x0
+      proof (rule decomp_H') txt_raw {* \label{decomp-H-use} *}
+        from HE y1 y2 show "y1 + y2 \<in> H"
+          by (rule subspace.add_closed)
+        from x0 and HE y y1 y2
+        have "x0 \<in> E"  "y \<in> E"  "y1 \<in> E"  "y2 \<in> E" by auto
+        with x1_rep x2_rep have "(y1 + y2) + (a1 + a2) \<cdot> x0 = x1 + x2"
+          by (simp add: add_ac add_mult_distrib2)
+        also note x1x2
+        finally show "(y1 + y2) + (a1 + a2) \<cdot> x0 = y + a \<cdot> x0" .
       qed
 
+      from h'_def x1x2 _ HE y x0
       have "h' (x1 + x2) = h y + a * xi"
         by (rule h'_definite)
-      also have "... = h (y1 + y2) + (a1 + a2) * xi"
-        by (simp add: ya)
-      also from vs y1' y2'
-      have "... = h y1 + h y2 + a1 * xi + a2 * xi"
-        by (simp add: linearform_add [of H]
-                      real_add_mult_distrib)
-      also have "... = (h y1 + a1 * xi) + (h y2 + a2 * xi)"
+      also have "\<dots> = h (y1 + y2) + (a1 + a2) * xi"
+        by (simp only: ya)
+      also from y1 y2 have "h (y1 + y2) = h y1 + h y2"
         by simp
-      also have "h y1 + a1 * xi = h' x1"
+      also have "\<dots> + (a1 + a2) * xi = (h y1 + a1 * xi) + (h y2 + a2 * xi)"
+        by (simp add: real_add_mult_distrib)
+      also from h'_def x1_rep _ HE y1 x0
+      have "h y1 + a1 * xi = h' x1"
         by (rule h'_definite [symmetric])
-      also have "h y2 + a2 * xi = h' x2"
+      also from h'_def x2_rep _ HE y2 x0
+      have "h y2 + a2 * xi = h' x2"
         by (rule h'_definite [symmetric])
       finally show ?thesis .
     qed
-
-    txt {* We further have to show that @{text h'} is multiplicative,
-    i.~e.\ @{text "h' (c \<cdot> x\<^sub>1) = c \<cdot> h' x\<^sub>1"} for @{text "x \<in> H"}
-    and @{text "c \<in> \<real>"}. *}
-
   next
-    fix c x1 assume x1: "x1 \<in> H'"
-    have ax1: "c \<cdot> x1 \<in> H'"
-      by (rule vs_mult_closed, rule h')
-    from x1
-    have ex_x: "\<And>x. x\<in> H' \<Longrightarrow> \<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H"
-      by (unfold H'_def vs_sum_def lin_def) fast
+    fix x1 c assume x1: "x1 \<in> H'"
+    show "h' (c \<cdot> x1) = c * (h' x1)"
+    proof -
+      from H' x1 have ax1: "c \<cdot> x1 \<in> H'"
+        by (rule vectorspace.mult_closed)
+      with x1 obtain y a y1 a1 where
+            cx1_rep: "c \<cdot> x1 = y + a \<cdot> x0" and y: "y \<in> H"
+          and x1_rep: "x1 = y1 + a1 \<cdot> x0" and y1: "y1 \<in> H"
+        by (unfold H'_def sum_def lin_def) blast
 
-    from x1 have ex_x1: "\<exists>y1 a1. x1 = y1 + a1 \<cdot> x0 \<and> y1 \<in> H"
-      by (unfold H'_def vs_sum_def lin_def) fast
-    with ex_x [of "c \<cdot> x1", OF ax1]
-    show "h' (c \<cdot> x1) = c * (h' x1)"
-    proof (elim exE conjE)
-      fix y1 y a1 a
-      assume y1: "x1 = y1 + a1 \<cdot> x0"     and y1': "y1 \<in> H"
-        and y: "c \<cdot> x1 = y  + a \<cdot> x0"    and y': "y \<in> H"
-
-      have ya: "c \<cdot> y1 = y \<and> c * a1 = a"
+      have ya: "c \<cdot> y1 = y \<and> c * a1 = a" using _ HE _ y x0
       proof (rule decomp_H')
-        show "c \<cdot> y1 + (c * a1) \<cdot> x0 = y + a \<cdot> x0"
-          by (simp! add: vs_add_mult_distrib1)
-        show "c \<cdot> y1 \<in> H" ..
+        from HE y1 show "c \<cdot> y1 \<in> H"
+          by (rule subspace.mult_closed)
+        from x0 and HE y y1
+        have "x0 \<in> E"  "y \<in> E"  "y1 \<in> E" by auto
+        with x1_rep have "c \<cdot> y1 + (c * a1) \<cdot> x0 = c \<cdot> x1"
+          by (simp add: mult_assoc add_mult_distrib1)
+        also note cx1_rep
+        finally show "c \<cdot> y1 + (c * a1) \<cdot> x0 = y + a \<cdot> x0" .
       qed
 
-      have "h' (c \<cdot> x1) = h y + a * xi"
+      from h'_def cx1_rep _ HE y x0 have "h' (c \<cdot> x1) = h y + a * xi"
         by (rule h'_definite)
-      also have "... = h (c \<cdot> y1) + (c * a1) * xi"
-        by (simp add: ya)
-      also from vs y1' have "... = c * h y1 + c * a1 * xi"
-        by (simp add: linearform_mult [of H])
-      also from vs y1' have "... = c * (h y1 + a1 * xi)"
-        by (simp add: real_add_mult_distrib2 real_mult_assoc)
-      also have "h y1 + a1 * xi = h' x1"
+      also have "\<dots> = h (c \<cdot> y1) + (c * a1) * xi"
+        by (simp only: ya)
+      also from y1 have "h (c \<cdot> y1) = c * h y1"
+        by simp
+      also have "\<dots> + (c * a1) * xi = c * (h y1 + a1 * xi)"
+        by (simp only: real_add_mult_distrib2)
+      also from h'_def x1_rep _ HE y1 x0 have "h y1 + a1 * xi = h' x1"
         by (rule h'_definite [symmetric])
       finally show ?thesis .
     qed
-  qed
+  }
 qed
 
 text {* \medskip The linear extension @{text h'} of @{text h}
-is bounded by the seminorm @{text p}. *}
+  is bounded by the seminorm @{text p}. *}
 
 lemma h'_norm_pres:
-  "h' \<equiv> \<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi
-  \<Longrightarrow> H' \<equiv> H + lin x0 \<Longrightarrow> x0 \<notin> H \<Longrightarrow> x0 \<in> E \<Longrightarrow> x0 \<noteq> 0 \<Longrightarrow> is_vectorspace E
-  \<Longrightarrow> is_subspace H E \<Longrightarrow> is_seminorm E p \<Longrightarrow> is_linearform H h
-  \<Longrightarrow> \<forall>y \<in> H. h y \<le> p y
-  \<Longrightarrow> \<forall>y \<in> H. - p (y + x0) - h y \<le> xi \<and> xi \<le> p (y + x0) - h y
-  \<Longrightarrow> \<forall>x \<in> H'. h' x \<le> p x"
-proof
-  assume h'_def:
-    "h' \<equiv> (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H
-               in (h y) + a * xi)"
+  includes var H + var h + var E
+  assumes h'_def: "h' \<equiv> \<lambda>x. let (y, a) =
+      SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi"
     and H'_def: "H' \<equiv> H + lin x0"
-    and vs: "x0 \<notin> H"  "x0 \<in> E"  "x0 \<noteq> 0"  "is_vectorspace E"
-            "is_subspace H E"  "is_seminorm E p"  "is_linearform H h"
-    and a: "\<forall>y \<in> H. h y \<le> p y"
-  presume a1: "\<forall>ya \<in> H. - p (ya + x0) - h ya \<le> xi"
-  presume a2: "\<forall>ya \<in> H. xi \<le> p (ya + x0) - h ya"
-  fix x assume "x \<in> H'"
-  have ex_x:
-    "\<And>x. x \<in> H' \<Longrightarrow> \<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H"
-    by (unfold H'_def vs_sum_def lin_def) fast
-  have "\<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H"
-    by (rule ex_x)
-  thus "h' x \<le> p x"
-  proof (elim exE conjE)
-    fix y a assume x: "x = y + a \<cdot> x0" and y: "y \<in> H"
-    have "h' x = h y + a * xi"
+    and x0: "x0 \<notin> H"  "x0 \<in> E"  "x0 \<noteq> 0"
+  includes vectorspace E + subvectorspace H E +
+    seminorm E p + linearform H h
+  assumes a: "\<forall>y \<in> H. h y \<le> p y"
+    and a': "\<forall>y \<in> H. - p (y + x0) - h y \<le> xi \<and> xi \<le> p (y + x0) - h y"
+  shows "\<forall>x \<in> H'. h' x \<le> p x"
+proof
+  fix x assume x': "x \<in> H'"
+  show "h' x \<le> p x"
+  proof -
+    from a' have a1: "\<forall>ya \<in> H. - p (ya + x0) - h ya \<le> xi"
+      and a2: "\<forall>ya \<in> H. xi \<le> p (ya + x0) - h ya" by auto
+    from x' obtain y a where
+        x_rep: "x = y + a \<cdot> x0" and y: "y \<in> H"
+      by (unfold H'_def sum_def lin_def) blast
+    from y have y': "y \<in> E" ..
+    from y have ay: "inverse a \<cdot> y \<in> H" by simp
+
+    from h'_def x_rep _ _ y x0 have "h' x = h y + a * xi"
       by (rule h'_definite)
-
-    txt {* Now we show @{text "h y + a \<cdot> \<xi> \<le> p (y + a \<cdot> x\<^sub>0)"}
-    by case analysis on @{text a}. *}
-
-    also have "... \<le> p (y + a \<cdot> x0)"
+    also have "\<dots> \<le> p (y + a \<cdot> x0)"
     proof (rule linorder_cases)
-
       assume z: "a = 0"
-      with vs y a show ?thesis by simp
-
-    txt {* In the case @{text "a < 0"}, we use @{text "a\<^sub>1"}
-    with @{text ya} taken as @{text "y / a"}: *}
-
+      then have "h y + a * xi = h y" by simp
+      also from a y have "\<dots> \<le> p y" ..
+      also from x0 y' z have "p y = p (y + a \<cdot> x0)" by simp
+      finally show ?thesis .
     next
+      txt {* In the case @{text "a < 0"}, we use @{text "a\<^sub>1"}
+        with @{text ya} taken as @{text "y / a"}: *}
       assume lz: "a < 0" hence nz: "a \<noteq> 0" by simp
-      from a1
-      have "- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y) \<le> xi"
-        by (rule bspec) (simp!)
-
-      txt {* The thesis for this case now follows by a short
-      calculation. *}
-      hence "a * xi \<le> a * (- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
-        by (rule real_mult_less_le_anti [OF lz])
-      also
-      have "... = - a * (p (inverse a \<cdot> y + x0)) - a * (h (inverse a \<cdot> y))"
+      from a1 ay
+      have "- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y) \<le> xi" ..
+      with lz have "a * xi \<le>
+          a * (- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
+        by (rule real_mult_less_le_anti)
+      also have "\<dots> =
+          - a * (p (inverse a \<cdot> y + x0)) - a * (h (inverse a \<cdot> y))"
         by (rule real_mult_diff_distrib)
-      also from lz vs y
-      have "- a * (p (inverse a \<cdot> y + x0)) = p (a \<cdot> (inverse a \<cdot> y + x0))"
-        by (simp add: seminorm_abs_homogenous abs_minus_eqI2)
-      also from nz vs y have "... = p (y + a \<cdot> x0)"
-        by (simp add: vs_add_mult_distrib1)
-      also from nz vs y have "a * (h (inverse a \<cdot> y)) =  h y"
-        by (simp add: linearform_mult [symmetric])
+      also from lz x0 y' have "- a * (p (inverse a \<cdot> y + x0)) =
+          p (a \<cdot> (inverse a \<cdot> y + x0))"
+        by (simp add: abs_homogenous abs_minus_eqI2)
+      also from nz x0 y' have "\<dots> = p (y + a \<cdot> x0)"
+        by (simp add: add_mult_distrib1 mult_assoc [symmetric])
+      also from nz y have "a * (h (inverse a \<cdot> y)) =  h y"
+        by simp
       finally have "a * xi \<le> p (y + a \<cdot> x0) - h y" .
-
-      hence "h y + a * xi \<le> h y + p (y + a \<cdot> x0) - h y"
-        by (simp add: real_add_left_cancel_le)
-      thus ?thesis by simp
-
+      then show ?thesis by simp
+    next
       txt {* In the case @{text "a > 0"}, we use @{text "a\<^sub>2"}
         with @{text ya} taken as @{text "y / a"}: *}
-
-    next
       assume gz: "0 < a" hence nz: "a \<noteq> 0" by simp
-      from a2 have "xi \<le> p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y)"
-        by (rule bspec) (simp!)
-
-      txt {* The thesis for this case follows by a short
-      calculation: *}
-
-      with gz
-      have "a * xi \<le> a * (p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
+      from a2 ay
+      have "xi \<le> p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y)" ..
+      with gz have "a * xi \<le>
+          a * (p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
         by (rule real_mult_less_le_mono)
       also have "... = a * p (inverse a \<cdot> y + x0) - a * h (inverse a \<cdot> y)"
         by (rule real_mult_diff_distrib2)
-      also from gz vs y
+      also from gz x0 y'
       have "a * p (inverse a \<cdot> y + x0) = p (a \<cdot> (inverse a \<cdot> y + x0))"
-        by (simp add: seminorm_abs_homogenous abs_eqI2)
-      also from nz vs y have "... = p (y + a \<cdot> x0)"
-        by (simp add: vs_add_mult_distrib1)
-      also from nz vs y have "a * h (inverse a \<cdot> y) = h y"
-        by (simp add: linearform_mult [symmetric])
+        by (simp add: abs_homogenous abs_eqI2)
+      also from nz x0 y' have "\<dots> = p (y + a \<cdot> x0)"
+        by (simp add: add_mult_distrib1 mult_assoc [symmetric])
+      also from nz y have "a * h (inverse a \<cdot> y) = h y"
+        by simp
       finally have "a * xi \<le> p (y + a \<cdot> x0) - h y" .
-
-      hence "h y + a * xi \<le> h y + (p (y + a \<cdot> x0) - h y)"
-        by (simp add: real_add_left_cancel_le)
-      thus ?thesis by simp
+      then show ?thesis by simp
     qed
-    also from x have "... = p x" by simp
+    also from x_rep have "\<dots> = p x" by (simp only:)
     finally show ?thesis .
   qed
-qed blast+
+qed
 
 end