src/HOL/Tools/Sledgehammer/metis_tactics.ML
changeset 35825 a6aad5a70ed4
parent 35568 8fbbfc39508f
child 35826 1590abc3d42a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Sledgehammer/metis_tactics.ML	Wed Mar 17 18:16:31 2010 +0100
@@ -0,0 +1,742 @@
+(*  Title:      HOL/Tools/metis_tools.ML
+    Author:     Kong W. Susanto and Lawrence C. Paulson, CU Computer Laboratory
+    Copyright   Cambridge University 2007
+
+HOL setup for the Metis prover.
+*)
+
+signature METIS_TOOLS =
+sig
+  val trace: bool Unsynchronized.ref
+  val type_lits: bool Config.T
+  val metis_tac: Proof.context -> thm list -> int -> tactic
+  val metisF_tac: Proof.context -> thm list -> int -> tactic
+  val metisFT_tac: Proof.context -> thm list -> int -> tactic
+  val setup: theory -> theory
+end
+
+structure MetisTools: METIS_TOOLS =
+struct
+
+val trace = Unsynchronized.ref false;
+fun trace_msg msg = if ! trace then tracing (msg ()) else ();
+
+val (type_lits, type_lits_setup) = Attrib.config_bool "metis_type_lits" true;
+
+datatype mode = FO | HO | FT  (*first-order, higher-order, fully-typed*)
+
+(* ------------------------------------------------------------------------- *)
+(* Useful Theorems                                                           *)
+(* ------------------------------------------------------------------------- *)
+val EXCLUDED_MIDDLE = @{lemma "P ==> ~ P ==> False" by (rule notE)}
+val REFL_THM = incr_indexes 2 @{lemma "t ~= t ==> False" by simp}
+val subst_em = @{lemma "s = t ==> P s ==> ~ P t ==> False" by simp}
+val ssubst_em = @{lemma "s = t ==> P t ==> ~ P s ==> False" by simp}
+
+(* ------------------------------------------------------------------------- *)
+(* Useful Functions                                                          *)
+(* ------------------------------------------------------------------------- *)
+
+(* match untyped terms*)
+fun untyped_aconv (Const(a,_))   (Const(b,_))   = (a=b)
+  | untyped_aconv (Free(a,_))    (Free(b,_))    = (a=b)
+  | untyped_aconv (Var((a,_),_)) (Var((b,_),_)) = (a=b)   (*the index is ignored!*)
+  | untyped_aconv (Bound i)      (Bound j)      = (i=j)
+  | untyped_aconv (Abs(a,_,t))  (Abs(b,_,u))    = (a=b) andalso untyped_aconv t u
+  | untyped_aconv (t1$t2) (u1$u2)  = untyped_aconv t1 u1 andalso untyped_aconv t2 u2
+  | untyped_aconv _              _              = false;
+
+(* Finding the relative location of an untyped term within a list of terms *)
+fun get_index lit =
+  let val lit = Envir.eta_contract lit
+      fun get n [] = raise Empty
+        | get n (x::xs) = if untyped_aconv lit (Envir.eta_contract (HOLogic.dest_Trueprop x))
+                          then n  else get (n+1) xs
+  in get 1 end;
+
+(* ------------------------------------------------------------------------- *)
+(* HOL to FOL  (Isabelle to Metis)                                           *)
+(* ------------------------------------------------------------------------- *)
+
+fun fn_isa_to_met "equal" = "="
+  | fn_isa_to_met x       = x;
+
+fun metis_lit b c args = (b, (c, args));
+
+fun hol_type_to_fol (Res_Clause.AtomV x) = Metis.Term.Var x
+  | hol_type_to_fol (Res_Clause.AtomF x) = Metis.Term.Fn(x,[])
+  | hol_type_to_fol (Res_Clause.Comp(tc,tps)) = Metis.Term.Fn(tc, map hol_type_to_fol tps);
+
+(*These two functions insert type literals before the real literals. That is the
+  opposite order from TPTP linkup, but maybe OK.*)
+
+fun hol_term_to_fol_FO tm =
+  case Res_HOL_Clause.strip_comb tm of
+      (Res_HOL_Clause.CombConst(c,_,tys), tms) =>
+        let val tyargs = map hol_type_to_fol tys
+            val args   = map hol_term_to_fol_FO tms
+        in Metis.Term.Fn (c, tyargs @ args) end
+    | (Res_HOL_Clause.CombVar(v,_), []) => Metis.Term.Var v
+    | _ => error "hol_term_to_fol_FO";
+
+fun hol_term_to_fol_HO (Res_HOL_Clause.CombVar (a, _)) = Metis.Term.Var a
+  | hol_term_to_fol_HO (Res_HOL_Clause.CombConst (a, _, tylist)) =
+      Metis.Term.Fn (fn_isa_to_met a, map hol_type_to_fol tylist)
+  | hol_term_to_fol_HO (Res_HOL_Clause.CombApp (tm1, tm2)) =
+       Metis.Term.Fn (".", map hol_term_to_fol_HO [tm1, tm2]);
+
+(*The fully-typed translation, to avoid type errors*)
+fun wrap_type (tm, ty) = Metis.Term.Fn("ti", [tm, hol_type_to_fol ty]);
+
+fun hol_term_to_fol_FT (Res_HOL_Clause.CombVar(a, ty)) =
+      wrap_type (Metis.Term.Var a, ty)
+  | hol_term_to_fol_FT (Res_HOL_Clause.CombConst(a, ty, _)) =
+      wrap_type (Metis.Term.Fn(fn_isa_to_met a, []), ty)
+  | hol_term_to_fol_FT (tm as Res_HOL_Clause.CombApp(tm1,tm2)) =
+       wrap_type (Metis.Term.Fn(".", map hol_term_to_fol_FT [tm1,tm2]),
+                  Res_HOL_Clause.type_of_combterm tm);
+
+fun hol_literal_to_fol FO (Res_HOL_Clause.Literal (pol, tm)) =
+      let val (Res_HOL_Clause.CombConst(p,_,tys), tms) = Res_HOL_Clause.strip_comb tm
+          val tylits = if p = "equal" then [] else map hol_type_to_fol tys
+          val lits = map hol_term_to_fol_FO tms
+      in metis_lit pol (fn_isa_to_met p) (tylits @ lits) end
+  | hol_literal_to_fol HO (Res_HOL_Clause.Literal (pol, tm)) =
+     (case Res_HOL_Clause.strip_comb tm of
+          (Res_HOL_Clause.CombConst("equal",_,_), tms) =>
+            metis_lit pol "=" (map hol_term_to_fol_HO tms)
+        | _ => metis_lit pol "{}" [hol_term_to_fol_HO tm])   (*hBOOL*)
+  | hol_literal_to_fol FT (Res_HOL_Clause.Literal (pol, tm)) =
+     (case Res_HOL_Clause.strip_comb tm of
+          (Res_HOL_Clause.CombConst("equal",_,_), tms) =>
+            metis_lit pol "=" (map hol_term_to_fol_FT tms)
+        | _ => metis_lit pol "{}" [hol_term_to_fol_FT tm])   (*hBOOL*);
+
+fun literals_of_hol_thm thy mode t =
+      let val (lits, types_sorts) = Res_HOL_Clause.literals_of_term thy t
+      in  (map (hol_literal_to_fol mode) lits, types_sorts) end;
+
+(*Sign should be "true" for conjecture type constraints, "false" for type lits in clauses.*)
+fun metis_of_typeLit pos (Res_Clause.LTVar (s,x))  = metis_lit pos s [Metis.Term.Var x]
+  | metis_of_typeLit pos (Res_Clause.LTFree (s,x)) = metis_lit pos s [Metis.Term.Fn(x,[])];
+
+fun default_sort _ (TVar _) = false
+  | default_sort ctxt (TFree (x, s)) = (s = the_default [] (Variable.def_sort ctxt (x, ~1)));
+
+fun metis_of_tfree tf =
+  Metis.Thm.axiom (Metis.LiteralSet.singleton (metis_of_typeLit true tf));
+
+fun hol_thm_to_fol is_conjecture ctxt mode th =
+  let val thy = ProofContext.theory_of ctxt
+      val (mlits, types_sorts) =
+             (literals_of_hol_thm thy mode o HOLogic.dest_Trueprop o prop_of) th
+  in
+      if is_conjecture then
+          (Metis.Thm.axiom (Metis.LiteralSet.fromList mlits), Res_Clause.add_typs types_sorts)
+      else
+        let val tylits = Res_Clause.add_typs
+                           (filter (not o default_sort ctxt) types_sorts)
+            val mtylits = if Config.get ctxt type_lits
+                          then map (metis_of_typeLit false) tylits else []
+        in
+          (Metis.Thm.axiom (Metis.LiteralSet.fromList(mtylits @ mlits)), [])
+        end
+  end;
+
+(* ARITY CLAUSE *)
+
+fun m_arity_cls (Res_Clause.TConsLit (c,t,args)) =
+      metis_lit true (Res_Clause.make_type_class c) [Metis.Term.Fn(t, map Metis.Term.Var args)]
+  | m_arity_cls (Res_Clause.TVarLit (c,str))     =
+      metis_lit false (Res_Clause.make_type_class c) [Metis.Term.Var str];
+
+(*TrueI is returned as the Isabelle counterpart because there isn't any.*)
+fun arity_cls (Res_Clause.ArityClause{conclLit,premLits,...}) =
+  (TrueI,
+   Metis.Thm.axiom (Metis.LiteralSet.fromList (map m_arity_cls (conclLit :: premLits))));
+
+(* CLASSREL CLAUSE *)
+
+fun m_classrel_cls subclass superclass =
+  [metis_lit false subclass [Metis.Term.Var "T"], metis_lit true superclass [Metis.Term.Var "T"]];
+
+fun classrel_cls (Res_Clause.ClassrelClause {subclass, superclass, ...}) =
+  (TrueI, Metis.Thm.axiom (Metis.LiteralSet.fromList (m_classrel_cls subclass superclass)));
+
+(* ------------------------------------------------------------------------- *)
+(* FOL to HOL  (Metis to Isabelle)                                           *)
+(* ------------------------------------------------------------------------- *)
+
+datatype term_or_type = Term of Term.term | Type of Term.typ;
+
+fun terms_of [] = []
+  | terms_of (Term t :: tts) = t :: terms_of tts
+  | terms_of (Type _ :: tts) = terms_of tts;
+
+fun types_of [] = []
+  | types_of (Term (Term.Var ((a,idx), _)) :: tts) =
+      if String.isPrefix "_" a then
+          (*Variable generated by Metis, which might have been a type variable.*)
+          TVar (("'" ^ a, idx), HOLogic.typeS) :: types_of tts
+      else types_of tts
+  | types_of (Term _ :: tts) = types_of tts
+  | types_of (Type T :: tts) = T :: types_of tts;
+
+fun apply_list rator nargs rands =
+  let val trands = terms_of rands
+  in  if length trands = nargs then Term (list_comb(rator, trands))
+      else error
+        ("apply_list: wrong number of arguments: " ^ Syntax.string_of_term_global Pure.thy rator ^
+          " expected " ^ Int.toString nargs ^
+          " received " ^ commas (map (Syntax.string_of_term_global Pure.thy) trands))
+  end;
+
+fun infer_types ctxt =
+  Syntax.check_terms (ProofContext.set_mode ProofContext.mode_pattern ctxt);
+
+(*We use 1 rather than 0 because variable references in clauses may otherwise conflict
+  with variable constraints in the goal...at least, type inference often fails otherwise.
+  SEE ALSO axiom_inf below.*)
+fun mk_var (w,T) = Term.Var((w,1), T);
+
+(*include the default sort, if available*)
+fun mk_tfree ctxt w =
+  let val ww = "'" ^ w
+  in  TFree(ww, the_default HOLogic.typeS (Variable.def_sort ctxt (ww, ~1)))  end;
+
+(*Remove the "apply" operator from an HO term*)
+fun strip_happ args (Metis.Term.Fn(".",[t,u])) = strip_happ (u::args) t
+  | strip_happ args x = (x, args);
+
+fun fol_type_to_isa _ (Metis.Term.Var v) =
+     (case Res_Reconstruct.strip_prefix Res_Clause.tvar_prefix v of
+          SOME w => Res_Reconstruct.make_tvar w
+        | NONE   => Res_Reconstruct.make_tvar v)
+  | fol_type_to_isa ctxt (Metis.Term.Fn(x, tys)) =
+     (case Res_Reconstruct.strip_prefix Res_Clause.tconst_prefix x of
+          SOME tc => Term.Type (Res_Reconstruct.invert_type_const tc, map (fol_type_to_isa ctxt) tys)
+        | NONE    =>
+      case Res_Reconstruct.strip_prefix Res_Clause.tfree_prefix x of
+          SOME tf => mk_tfree ctxt tf
+        | NONE    => error ("fol_type_to_isa: " ^ x));
+
+(*Maps metis terms to isabelle terms*)
+fun fol_term_to_hol_RAW ctxt fol_tm =
+  let val thy = ProofContext.theory_of ctxt
+      val _ = trace_msg (fn () => "fol_term_to_hol: " ^ Metis.Term.toString fol_tm)
+      fun tm_to_tt (Metis.Term.Var v) =
+             (case Res_Reconstruct.strip_prefix Res_Clause.tvar_prefix v of
+                  SOME w => Type (Res_Reconstruct.make_tvar w)
+                | NONE =>
+              case Res_Reconstruct.strip_prefix Res_Clause.schematic_var_prefix v of
+                  SOME w => Term (mk_var (w, HOLogic.typeT))
+                | NONE   => Term (mk_var (v, HOLogic.typeT)) )
+                    (*Var from Metis with a name like _nnn; possibly a type variable*)
+        | tm_to_tt (Metis.Term.Fn ("{}", [arg])) = tm_to_tt arg   (*hBOOL*)
+        | tm_to_tt (t as Metis.Term.Fn (".",_)) =
+            let val (rator,rands) = strip_happ [] t
+            in  case rator of
+                    Metis.Term.Fn(fname,ts) => applic_to_tt (fname, ts @ rands)
+                  | _ => case tm_to_tt rator of
+                             Term t => Term (list_comb(t, terms_of (map tm_to_tt rands)))
+                           | _ => error "tm_to_tt: HO application"
+            end
+        | tm_to_tt (Metis.Term.Fn (fname, args)) = applic_to_tt (fname,args)
+      and applic_to_tt ("=",ts) =
+            Term (list_comb(Const ("op =", HOLogic.typeT), terms_of (map tm_to_tt ts)))
+        | applic_to_tt (a,ts) =
+            case Res_Reconstruct.strip_prefix Res_Clause.const_prefix a of
+                SOME b =>
+                  let val c = Res_Reconstruct.invert_const b
+                      val ntypes = Res_Reconstruct.num_typargs thy c
+                      val nterms = length ts - ntypes
+                      val tts = map tm_to_tt ts
+                      val tys = types_of (List.take(tts,ntypes))
+                      val ntyargs = Res_Reconstruct.num_typargs thy c
+                  in if length tys = ntyargs then
+                         apply_list (Const (c, dummyT)) nterms (List.drop(tts,ntypes))
+                     else error ("Constant " ^ c ^ " expects " ^ Int.toString ntyargs ^
+                                 " but gets " ^ Int.toString (length tys) ^
+                                 " type arguments\n" ^
+                                 cat_lines (map (Syntax.string_of_typ ctxt) tys) ^
+                                 " the terms are \n" ^
+                                 cat_lines (map (Syntax.string_of_term ctxt) (terms_of tts)))
+                     end
+              | NONE => (*Not a constant. Is it a type constructor?*)
+            case Res_Reconstruct.strip_prefix Res_Clause.tconst_prefix a of
+                SOME b =>
+                  Type (Term.Type (Res_Reconstruct.invert_type_const b, types_of (map tm_to_tt ts)))
+              | NONE => (*Maybe a TFree. Should then check that ts=[].*)
+            case Res_Reconstruct.strip_prefix Res_Clause.tfree_prefix a of
+                SOME b => Type (mk_tfree ctxt b)
+              | NONE => (*a fixed variable? They are Skolem functions.*)
+            case Res_Reconstruct.strip_prefix Res_Clause.fixed_var_prefix a of
+                SOME b =>
+                  let val opr = Term.Free(b, HOLogic.typeT)
+                  in  apply_list opr (length ts) (map tm_to_tt ts)  end
+              | NONE => error ("unexpected metis function: " ^ a)
+  in  case tm_to_tt fol_tm of Term t => t | _ => error "fol_tm_to_tt: Term expected"  end;
+
+(*Maps fully-typed metis terms to isabelle terms*)
+fun fol_term_to_hol_FT ctxt fol_tm =
+  let val _ = trace_msg (fn () => "fol_term_to_hol_FT: " ^ Metis.Term.toString fol_tm)
+      fun cvt (Metis.Term.Fn ("ti", [Metis.Term.Var v, _])) =
+             (case Res_Reconstruct.strip_prefix Res_Clause.schematic_var_prefix v of
+                  SOME w =>  mk_var(w, dummyT)
+                | NONE   => mk_var(v, dummyT))
+        | cvt (Metis.Term.Fn ("ti", [Metis.Term.Fn ("=",[]), _])) =
+            Const ("op =", HOLogic.typeT)
+        | cvt (Metis.Term.Fn ("ti", [Metis.Term.Fn (x,[]), ty])) =
+           (case Res_Reconstruct.strip_prefix Res_Clause.const_prefix x of
+                SOME c => Const (Res_Reconstruct.invert_const c, dummyT)
+              | NONE => (*Not a constant. Is it a fixed variable??*)
+            case Res_Reconstruct.strip_prefix Res_Clause.fixed_var_prefix x of
+                SOME v => Free (v, fol_type_to_isa ctxt ty)
+              | NONE => error ("fol_term_to_hol_FT bad constant: " ^ x))
+        | cvt (Metis.Term.Fn ("ti", [Metis.Term.Fn (".",[tm1,tm2]), _])) =
+            cvt tm1 $ cvt tm2
+        | cvt (Metis.Term.Fn (".",[tm1,tm2])) = (*untyped application*)
+            cvt tm1 $ cvt tm2
+        | cvt (Metis.Term.Fn ("{}", [arg])) = cvt arg   (*hBOOL*)
+        | cvt (Metis.Term.Fn ("=", [tm1,tm2])) =
+            list_comb(Const ("op =", HOLogic.typeT), map cvt [tm1,tm2])
+        | cvt (t as Metis.Term.Fn (x, [])) =
+           (case Res_Reconstruct.strip_prefix Res_Clause.const_prefix x of
+                SOME c => Const (Res_Reconstruct.invert_const c, dummyT)
+              | NONE => (*Not a constant. Is it a fixed variable??*)
+            case Res_Reconstruct.strip_prefix Res_Clause.fixed_var_prefix x of
+                SOME v => Free (v, dummyT)
+              | NONE => (trace_msg (fn () => "fol_term_to_hol_FT bad const: " ^ x);
+                  fol_term_to_hol_RAW ctxt t))
+        | cvt t = (trace_msg (fn () => "fol_term_to_hol_FT bad term: " ^ Metis.Term.toString t);
+            fol_term_to_hol_RAW ctxt t)
+  in  cvt fol_tm   end;
+
+fun fol_term_to_hol ctxt FO = fol_term_to_hol_RAW ctxt
+  | fol_term_to_hol ctxt HO = fol_term_to_hol_RAW ctxt
+  | fol_term_to_hol ctxt FT = fol_term_to_hol_FT ctxt;
+
+fun fol_terms_to_hol ctxt mode fol_tms =
+  let val ts = map (fol_term_to_hol ctxt mode) fol_tms
+      val _ = trace_msg (fn () => "  calling type inference:")
+      val _ = app (fn t => trace_msg (fn () => Syntax.string_of_term ctxt t)) ts
+      val ts' = infer_types ctxt ts;
+      val _ = app (fn t => trace_msg
+                    (fn () => "  final term: " ^ Syntax.string_of_term ctxt t ^
+                              "  of type  " ^ Syntax.string_of_typ ctxt (type_of t)))
+                  ts'
+  in  ts'  end;
+
+fun mk_not (Const ("Not", _) $ b) = b
+  | mk_not b = HOLogic.mk_not b;
+
+val metis_eq = Metis.Term.Fn ("=", []);
+
+(* ------------------------------------------------------------------------- *)
+(* FOL step Inference Rules                                                  *)
+(* ------------------------------------------------------------------------- *)
+
+(*for debugging only*)
+fun print_thpair (fth,th) =
+  (trace_msg (fn () => "=============================================");
+   trace_msg (fn () => "Metis: " ^ Metis.Thm.toString fth);
+   trace_msg (fn () => "Isabelle: " ^ Display.string_of_thm_without_context th));
+
+fun lookth thpairs (fth : Metis.Thm.thm) =
+  the (AList.lookup (uncurry Metis.Thm.equal) thpairs fth)
+  handle Option => error ("Failed to find a Metis theorem " ^ Metis.Thm.toString fth);
+
+fun is_TrueI th = Thm.eq_thm(TrueI,th);
+
+fun cterm_incr_types thy idx = cterm_of thy o (map_types (Logic.incr_tvar idx));
+
+fun inst_excluded_middle thy i_atm =
+  let val th = EXCLUDED_MIDDLE
+      val [vx] = Term.add_vars (prop_of th) []
+      val substs = [(cterm_of thy (Var vx), cterm_of thy i_atm)]
+  in  cterm_instantiate substs th  end;
+
+(* INFERENCE RULE: AXIOM *)
+fun axiom_inf thpairs th = incr_indexes 1 (lookth thpairs th);
+    (*This causes variables to have an index of 1 by default. SEE ALSO mk_var above.*)
+
+(* INFERENCE RULE: ASSUME *)
+fun assume_inf ctxt mode atm =
+  inst_excluded_middle
+    (ProofContext.theory_of ctxt)
+    (singleton (fol_terms_to_hol ctxt mode) (Metis.Term.Fn atm));
+
+(* INFERENCE RULE: INSTANTIATE (Subst). Type instantiations are ignored. Trying to reconstruct
+   them admits new possibilities of errors, e.g. concerning sorts. Instead we try to arrange
+   that new TVars are distinct and that types can be inferred from terms.*)
+fun inst_inf ctxt mode thpairs fsubst th =
+  let val thy = ProofContext.theory_of ctxt
+      val i_th   = lookth thpairs th
+      val i_th_vars = Term.add_vars (prop_of i_th) []
+      fun find_var x = the (List.find (fn ((a,_),_) => a=x) i_th_vars)
+      fun subst_translation (x,y) =
+            let val v = find_var x
+                val t = fol_term_to_hol ctxt mode y (*we call infer_types below*)
+            in  SOME (cterm_of thy (Var v), t)  end
+            handle Option =>
+                (trace_msg (fn() => "List.find failed for the variable " ^ x ^
+                                       " in " ^ Display.string_of_thm ctxt i_th);
+                 NONE)
+      fun remove_typeinst (a, t) =
+            case Res_Reconstruct.strip_prefix Res_Clause.schematic_var_prefix a of
+                SOME b => SOME (b, t)
+              | NONE   => case Res_Reconstruct.strip_prefix Res_Clause.tvar_prefix a of
+                SOME _ => NONE          (*type instantiations are forbidden!*)
+              | NONE   => SOME (a,t)    (*internal Metis var?*)
+      val _ = trace_msg (fn () => "  isa th: " ^ Display.string_of_thm ctxt i_th)
+      val substs = map_filter remove_typeinst (Metis.Subst.toList fsubst)
+      val (vars,rawtms) = ListPair.unzip (map_filter subst_translation substs)
+      val tms = infer_types ctxt rawtms;
+      val ctm_of = cterm_incr_types thy (1 + Thm.maxidx_of i_th)
+      val substs' = ListPair.zip (vars, map ctm_of tms)
+      val _ = trace_msg (fn () =>
+        cat_lines ("subst_translations:" ::
+          (substs' |> map (fn (x, y) =>
+            Syntax.string_of_term ctxt (term_of x) ^ " |-> " ^
+            Syntax.string_of_term ctxt (term_of y)))));
+  in  cterm_instantiate substs' i_th
+      handle THM (msg, _, _) => error ("metis error (inst_inf): " ^ msg)
+  end;
+
+(* INFERENCE RULE: RESOLVE *)
+
+(*Like RSN, but we rename apart only the type variables. Vars here typically have an index
+  of 1, and the use of RSN would increase this typically to 3. Instantiations of those Vars
+  could then fail. See comment on mk_var.*)
+fun resolve_inc_tyvars(tha,i,thb) =
+  let val tha = Drule.incr_type_indexes (1 + Thm.maxidx_of thb) tha
+      val ths = Seq.list_of (Thm.bicompose false (false,tha,nprems_of tha) i thb)
+  in
+      case distinct Thm.eq_thm ths of
+        [th] => th
+      | _ => raise THM ("resolve_inc_tyvars: unique result expected", i, [tha,thb])
+  end;
+
+fun resolve_inf ctxt mode thpairs atm th1 th2 =
+  let
+    val i_th1 = lookth thpairs th1 and i_th2 = lookth thpairs th2
+    val _ = trace_msg (fn () => "  isa th1 (pos): " ^ Display.string_of_thm ctxt i_th1)
+    val _ = trace_msg (fn () => "  isa th2 (neg): " ^ Display.string_of_thm ctxt i_th2)
+  in
+    if is_TrueI i_th1 then i_th2 (*Trivial cases where one operand is type info*)
+    else if is_TrueI i_th2 then i_th1
+    else
+      let
+        val i_atm = singleton (fol_terms_to_hol ctxt mode) (Metis.Term.Fn atm)
+        val _ = trace_msg (fn () => "  atom: " ^ Syntax.string_of_term ctxt i_atm)
+        val prems_th1 = prems_of i_th1
+        val prems_th2 = prems_of i_th2
+        val index_th1 = get_index (mk_not i_atm) prems_th1
+              handle Empty => error "Failed to find literal in th1"
+        val _ = trace_msg (fn () => "  index_th1: " ^ Int.toString index_th1)
+        val index_th2 = get_index i_atm prems_th2
+              handle Empty => error "Failed to find literal in th2"
+        val _ = trace_msg (fn () => "  index_th2: " ^ Int.toString index_th2)
+    in  resolve_inc_tyvars (Meson.select_literal index_th1 i_th1, index_th2, i_th2)  end
+  end;
+
+(* INFERENCE RULE: REFL *)
+val refl_x = cterm_of @{theory} (Var (hd (Term.add_vars (prop_of REFL_THM) [])));
+val refl_idx = 1 + Thm.maxidx_of REFL_THM;
+
+fun refl_inf ctxt mode t =
+  let val thy = ProofContext.theory_of ctxt
+      val i_t = singleton (fol_terms_to_hol ctxt mode) t
+      val _ = trace_msg (fn () => "  term: " ^ Syntax.string_of_term ctxt i_t)
+      val c_t = cterm_incr_types thy refl_idx i_t
+  in  cterm_instantiate [(refl_x, c_t)] REFL_THM  end;
+
+fun get_ty_arg_size _ (Const ("op =", _)) = 0  (*equality has no type arguments*)
+  | get_ty_arg_size thy (Const (c, _)) = (Res_Reconstruct.num_typargs thy c handle TYPE _ => 0)
+  | get_ty_arg_size _ _ = 0;
+
+(* INFERENCE RULE: EQUALITY *)
+fun equality_inf ctxt mode (pos, atm) fp fr =
+  let val thy = ProofContext.theory_of ctxt
+      val m_tm = Metis.Term.Fn atm
+      val [i_atm,i_tm] = fol_terms_to_hol ctxt mode [m_tm, fr]
+      val _ = trace_msg (fn () => "sign of the literal: " ^ Bool.toString pos)
+      fun replace_item_list lx 0 (_::ls) = lx::ls
+        | replace_item_list lx i (l::ls) = l :: replace_item_list lx (i-1) ls
+      fun path_finder_FO tm [] = (tm, Term.Bound 0)
+        | path_finder_FO tm (p::ps) =
+            let val (tm1,args) = Term.strip_comb tm
+                val adjustment = get_ty_arg_size thy tm1
+                val p' = if adjustment > p then p else p-adjustment
+                val tm_p = List.nth(args,p')
+                  handle Subscript => error ("equality_inf: " ^ Int.toString p ^ " adj " ^
+                    Int.toString adjustment  ^ " term " ^  Syntax.string_of_term ctxt tm)
+                val _ = trace_msg (fn () => "path_finder: " ^ Int.toString p ^
+                                      "  " ^ Syntax.string_of_term ctxt tm_p)
+                val (r,t) = path_finder_FO tm_p ps
+            in
+                (r, list_comb (tm1, replace_item_list t p' args))
+            end
+      fun path_finder_HO tm [] = (tm, Term.Bound 0)
+        | path_finder_HO (t$u) (0::ps) = (fn(x,y) => (x, y$u)) (path_finder_HO t ps)
+        | path_finder_HO (t$u) (_::ps) = (fn(x,y) => (x, t$y)) (path_finder_HO u ps)
+      fun path_finder_FT tm [] _ = (tm, Term.Bound 0)
+        | path_finder_FT tm (0::ps) (Metis.Term.Fn ("ti", [t1, _])) =
+            path_finder_FT tm ps t1
+        | path_finder_FT (t$u) (0::ps) (Metis.Term.Fn (".", [t1, _])) =
+            (fn(x,y) => (x, y$u)) (path_finder_FT t ps t1)
+        | path_finder_FT (t$u) (1::ps) (Metis.Term.Fn (".", [_, t2])) =
+            (fn(x,y) => (x, t$y)) (path_finder_FT u ps t2)
+        | path_finder_FT tm ps t = error ("equality_inf, path_finder_FT: path = " ^
+                                        space_implode " " (map Int.toString ps) ^
+                                        " isa-term: " ^  Syntax.string_of_term ctxt tm ^
+                                        " fol-term: " ^ Metis.Term.toString t)
+      fun path_finder FO tm ps _ = path_finder_FO tm ps
+        | path_finder HO (tm as Const("op =",_) $ _ $ _) (p::ps) _ =
+             (*equality: not curried, as other predicates are*)
+             if p=0 then path_finder_HO tm (0::1::ps)  (*select first operand*)
+             else path_finder_HO tm (p::ps)        (*1 selects second operand*)
+        | path_finder HO tm (_ :: ps) (Metis.Term.Fn ("{}", [_])) =
+             path_finder_HO tm ps      (*if not equality, ignore head to skip hBOOL*)
+        | path_finder FT (tm as Const("op =",_) $ _ $ _) (p::ps)
+                            (Metis.Term.Fn ("=", [t1,t2])) =
+             (*equality: not curried, as other predicates are*)
+             if p=0 then path_finder_FT tm (0::1::ps)
+                          (Metis.Term.Fn (".", [Metis.Term.Fn (".", [metis_eq,t1]), t2]))
+                          (*select first operand*)
+             else path_finder_FT tm (p::ps)
+                   (Metis.Term.Fn (".", [metis_eq,t2]))
+                   (*1 selects second operand*)
+        | path_finder FT tm (_ :: ps) (Metis.Term.Fn ("{}", [t1])) = path_finder_FT tm ps t1
+             (*if not equality, ignore head to skip the hBOOL predicate*)
+        | path_finder FT tm ps t = path_finder_FT tm ps t  (*really an error case!*)
+      fun path_finder_lit ((nt as Term.Const ("Not", _)) $ tm_a) idx =
+            let val (tm, tm_rslt) = path_finder mode tm_a idx m_tm
+            in (tm, nt $ tm_rslt) end
+        | path_finder_lit tm_a idx = path_finder mode tm_a idx m_tm
+      val (tm_subst, body) = path_finder_lit i_atm fp
+      val tm_abs = Term.Abs("x", Term.type_of tm_subst, body)
+      val _ = trace_msg (fn () => "abstraction: " ^ Syntax.string_of_term ctxt tm_abs)
+      val _ = trace_msg (fn () => "i_tm: " ^ Syntax.string_of_term ctxt i_tm)
+      val _ = trace_msg (fn () => "located term: " ^ Syntax.string_of_term ctxt tm_subst)
+      val imax = maxidx_of_term (i_tm $ tm_abs $ tm_subst)  (*ill typed but gives right max*)
+      val subst' = incr_indexes (imax+1) (if pos then subst_em else ssubst_em)
+      val _ = trace_msg (fn () => "subst' " ^ Display.string_of_thm ctxt subst')
+      val eq_terms = map (pairself (cterm_of thy))
+        (ListPair.zip (OldTerm.term_vars (prop_of subst'), [tm_abs, tm_subst, i_tm]))
+  in  cterm_instantiate eq_terms subst'  end;
+
+val factor = Seq.hd o distinct_subgoals_tac;
+
+fun step _ _ thpairs (fol_th, Metis.Proof.Axiom _) = factor (axiom_inf thpairs fol_th)
+  | step ctxt mode _ (_, Metis.Proof.Assume f_atm) = assume_inf ctxt mode f_atm
+  | step ctxt mode thpairs (_, Metis.Proof.Subst (f_subst, f_th1)) =
+      factor (inst_inf ctxt mode thpairs f_subst f_th1)
+  | step ctxt mode thpairs (_, Metis.Proof.Resolve(f_atm, f_th1, f_th2)) =
+      factor (resolve_inf ctxt mode thpairs f_atm f_th1 f_th2)
+  | step ctxt mode _ (_, Metis.Proof.Refl f_tm) = refl_inf ctxt mode f_tm
+  | step ctxt mode _ (_, Metis.Proof.Equality (f_lit, f_p, f_r)) =
+      equality_inf ctxt mode f_lit f_p f_r;
+
+fun real_literal (_, (c, _)) = not (String.isPrefix Res_Clause.class_prefix c);
+
+fun translate _ _ thpairs [] = thpairs
+  | translate mode ctxt thpairs ((fol_th, inf) :: infpairs) =
+      let val _ = trace_msg (fn () => "=============================================")
+          val _ = trace_msg (fn () => "METIS THM: " ^ Metis.Thm.toString fol_th)
+          val _ = trace_msg (fn () => "INFERENCE: " ^ Metis.Proof.inferenceToString inf)
+          val th = Meson.flexflex_first_order (step ctxt mode thpairs (fol_th, inf))
+          val _ = trace_msg (fn () => "ISABELLE THM: " ^ Display.string_of_thm ctxt th)
+          val _ = trace_msg (fn () => "=============================================")
+          val n_metis_lits =
+            length (filter real_literal (Metis.LiteralSet.toList (Metis.Thm.clause fol_th)))
+      in
+          if nprems_of th = n_metis_lits then ()
+          else error "Metis: proof reconstruction has gone wrong";
+          translate mode ctxt ((fol_th, th) :: thpairs) infpairs
+      end;
+
+(*Determining which axiom clauses are actually used*)
+fun used_axioms axioms (th, Metis.Proof.Axiom _) = SOME (lookth axioms th)
+  | used_axioms _ _ = NONE;
+
+(* ------------------------------------------------------------------------- *)
+(* Translation of HO Clauses                                                 *)
+(* ------------------------------------------------------------------------- *)
+
+fun cnf_th thy th = hd (Res_Axioms.cnf_axiom thy th);
+
+val equal_imp_fequal' = cnf_th @{theory} @{thm equal_imp_fequal};
+val fequal_imp_equal' = cnf_th @{theory} @{thm fequal_imp_equal};
+
+val comb_I = cnf_th @{theory} Res_HOL_Clause.comb_I;
+val comb_K = cnf_th @{theory} Res_HOL_Clause.comb_K;
+val comb_B = cnf_th @{theory} Res_HOL_Clause.comb_B;
+val comb_C = cnf_th @{theory} Res_HOL_Clause.comb_C;
+val comb_S = cnf_th @{theory} Res_HOL_Clause.comb_S;
+
+fun type_ext thy tms =
+  let val subs = Res_ATP.tfree_classes_of_terms tms
+      val supers = Res_ATP.tvar_classes_of_terms tms
+      and tycons = Res_ATP.type_consts_of_terms thy tms
+      val (supers', arity_clauses) = Res_Clause.make_arity_clauses thy tycons supers
+      val classrel_clauses = Res_Clause.make_classrel_clauses thy subs supers'
+  in  map classrel_cls classrel_clauses @ map arity_cls arity_clauses
+  end;
+
+(* ------------------------------------------------------------------------- *)
+(* Logic maps manage the interface between HOL and first-order logic.        *)
+(* ------------------------------------------------------------------------- *)
+
+type logic_map =
+  {axioms : (Metis.Thm.thm * thm) list,
+   tfrees : Res_Clause.type_literal list};
+
+fun const_in_metis c (pred, tm_list) =
+  let
+    fun in_mterm (Metis.Term.Var _) = false
+      | in_mterm (Metis.Term.Fn (".", tm_list)) = exists in_mterm tm_list
+      | in_mterm (Metis.Term.Fn (nm, tm_list)) = c=nm orelse exists in_mterm tm_list
+  in  c = pred orelse exists in_mterm tm_list  end;
+
+(*Extract TFree constraints from context to include as conjecture clauses*)
+fun init_tfrees ctxt =
+  let fun add ((a,i),s) Ts = if i = ~1 then TFree(a,s) :: Ts else Ts
+  in  Res_Clause.add_typs (Vartab.fold add (#2 (Variable.constraints_of ctxt)) []) end;
+
+(*transform isabelle type / arity clause to metis clause *)
+fun add_type_thm [] lmap = lmap
+  | add_type_thm ((ith, mth) :: cls) {axioms, tfrees} =
+      add_type_thm cls {axioms = (mth, ith) :: axioms,
+                        tfrees = tfrees}
+
+(*Insert non-logical axioms corresponding to all accumulated TFrees*)
+fun add_tfrees {axioms, tfrees} : logic_map =
+     {axioms = (map (fn tf => (metis_of_tfree tf, TrueI)) (distinct op= tfrees)) @ axioms,
+      tfrees = tfrees};
+
+fun string_of_mode FO = "FO"
+  | string_of_mode HO = "HO"
+  | string_of_mode FT = "FT"
+
+(* Function to generate metis clauses, including comb and type clauses *)
+fun build_map mode0 ctxt cls ths =
+  let val thy = ProofContext.theory_of ctxt
+      (*The modes FO and FT are sticky. HO can be downgraded to FO.*)
+      fun set_mode FO = FO
+        | set_mode HO = if forall (Meson.is_fol_term thy o prop_of) (cls@ths) then FO else HO
+        | set_mode FT = FT
+      val mode = set_mode mode0
+      (*transform isabelle clause to metis clause *)
+      fun add_thm is_conjecture ith {axioms, tfrees} : logic_map =
+        let val (mth, tfree_lits) = hol_thm_to_fol is_conjecture ctxt mode ith
+        in
+           {axioms = (mth, Meson.make_meta_clause ith) :: axioms,
+            tfrees = union (op =) tfree_lits tfrees}
+        end;
+      val lmap0 = fold (add_thm true) cls {axioms = [], tfrees = init_tfrees ctxt}
+      val lmap = fold (add_thm false) ths (add_tfrees lmap0)
+      val clause_lists = map (Metis.Thm.clause o #1) (#axioms lmap)
+      fun used c = exists (Metis.LiteralSet.exists (const_in_metis c o #2)) clause_lists
+      (*Now check for the existence of certain combinators*)
+      val thI  = if used "c_COMBI" then [comb_I] else []
+      val thK  = if used "c_COMBK" then [comb_K] else []
+      val thB   = if used "c_COMBB" then [comb_B] else []
+      val thC   = if used "c_COMBC" then [comb_C] else []
+      val thS   = if used "c_COMBS" then [comb_S] else []
+      val thEQ  = if used "c_fequal" then [fequal_imp_equal', equal_imp_fequal'] else []
+      val lmap' = if mode=FO then lmap
+                  else fold (add_thm false) (thEQ @ thS @ thC @ thB @ thK @ thI) lmap
+  in
+      (mode, add_type_thm (type_ext thy (map prop_of (cls @ ths))) lmap')
+  end;
+
+fun refute cls =
+    Metis.Resolution.loop (Metis.Resolution.new Metis.Resolution.default cls);
+
+fun is_false t = t aconv (HOLogic.mk_Trueprop HOLogic.false_const);
+
+fun common_thm ths1 ths2 = exists (member Thm.eq_thm ths1) (map Meson.make_meta_clause ths2);
+
+exception METIS of string;
+
+(* Main function to start metis prove and reconstruction *)
+fun FOL_SOLVE mode ctxt cls ths0 =
+  let val thy = ProofContext.theory_of ctxt
+      val th_cls_pairs = map (fn th => (Thm.get_name_hint th, Res_Axioms.cnf_axiom thy th)) ths0
+      val ths = maps #2 th_cls_pairs
+      val _ = trace_msg (fn () => "FOL_SOLVE: CONJECTURE CLAUSES")
+      val _ = app (fn th => trace_msg (fn () => Display.string_of_thm ctxt th)) cls
+      val _ = trace_msg (fn () => "THEOREM CLAUSES")
+      val _ = app (fn th => trace_msg (fn () => Display.string_of_thm ctxt th)) ths
+      val (mode, {axioms,tfrees}) = build_map mode ctxt cls ths
+      val _ = if null tfrees then ()
+              else (trace_msg (fn () => "TFREE CLAUSES");
+                    app (fn tf => trace_msg (fn _ => Res_Clause.tptp_of_typeLit true tf)) tfrees)
+      val _ = trace_msg (fn () => "CLAUSES GIVEN TO METIS")
+      val thms = map #1 axioms
+      val _ = app (fn th => trace_msg (fn () => Metis.Thm.toString th)) thms
+      val _ = trace_msg (fn () => "mode = " ^ string_of_mode mode)
+      val _ = trace_msg (fn () => "START METIS PROVE PROCESS")
+  in
+      case filter (is_false o prop_of) cls of
+          false_th::_ => [false_th RS @{thm FalseE}]
+        | [] =>
+      case refute thms of
+          Metis.Resolution.Contradiction mth =>
+            let val _ = trace_msg (fn () => "METIS RECONSTRUCTION START: " ^
+                          Metis.Thm.toString mth)
+                val ctxt' = fold Variable.declare_constraints (map prop_of cls) ctxt
+                             (*add constraints arising from converting goal to clause form*)
+                val proof = Metis.Proof.proof mth
+                val result = translate mode ctxt' axioms proof
+                and used = map_filter (used_axioms axioms) proof
+                val _ = trace_msg (fn () => "METIS COMPLETED...clauses actually used:")
+                val _ = app (fn th => trace_msg (fn () => Display.string_of_thm ctxt th)) used
+                val unused = th_cls_pairs |> map_filter (fn (name, cls) =>
+                  if common_thm used cls then NONE else SOME name)
+            in
+                if null unused then ()
+                else warning ("Metis: unused theorems " ^ commas_quote unused);
+                case result of
+                    (_,ith)::_ =>
+                        (trace_msg (fn () => "success: " ^ Display.string_of_thm ctxt ith);
+                         [ith])
+                  | _ => (trace_msg (fn () => "Metis: no result");
+                          [])
+            end
+        | Metis.Resolution.Satisfiable _ =>
+            (trace_msg (fn () => "Metis: No first-order proof with the lemmas supplied");
+             [])
+  end;
+
+fun metis_general_tac mode ctxt ths i st0 =
+  let val _ = trace_msg (fn () =>
+        "Metis called with theorems " ^ cat_lines (map (Display.string_of_thm ctxt) ths))
+  in
+    if exists_type Res_Axioms.type_has_topsort (prop_of st0)
+    then raise METIS "Metis: Proof state contains the universal sort {}"
+    else
+      (Meson.MESON Res_Axioms.neg_clausify
+        (fn cls => resolve_tac (FOL_SOLVE mode ctxt cls ths) 1) ctxt i
+          THEN Res_Axioms.expand_defs_tac st0) st0
+  end
+  handle METIS s => (warning ("Metis: " ^ s); Seq.empty);
+
+val metis_tac = metis_general_tac HO;
+val metisF_tac = metis_general_tac FO;
+val metisFT_tac = metis_general_tac FT;
+
+fun method name mode comment = Method.setup name (Attrib.thms >> (fn ths => fn ctxt =>
+  SIMPLE_METHOD' (CHANGED_PROP o metis_general_tac mode ctxt ths))) comment;
+
+val setup =
+  type_lits_setup #>
+  method @{binding metis} HO "METIS for FOL & HOL problems" #>
+  method @{binding metisF} FO "METIS for FOL problems" #>
+  method @{binding metisFT} FT "METIS with fully-typed translation" #>
+  Method.setup @{binding finish_clausify}
+    (Scan.succeed (K (SIMPLE_METHOD (Res_Axioms.expand_defs_tac refl))))
+    "cleanup after conversion to clauses";
+
+end;