--- a/src/HOL/Tools/res_reconstruct.ML Wed Mar 17 17:23:45 2010 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,584 +0,0 @@
-(* Title: HOL/Tools/res_reconstruct.ML
- Author: Lawrence C Paulson and Claire Quigley, Cambridge University Computer Laboratory
-
-Transfer of proofs from external provers.
-*)
-
-signature RES_RECONSTRUCT =
-sig
- val chained_hint: string
-
- val fix_sorts: sort Vartab.table -> term -> term
- val invert_const: string -> string
- val invert_type_const: string -> string
- val num_typargs: theory -> string -> int
- val make_tvar: string -> typ
- val strip_prefix: string -> string -> string option
- val setup: theory -> theory
- (* extracting lemma list*)
- val find_failure: string -> string option
- val lemma_list: bool -> string ->
- string * string vector * (int * int) * Proof.context * thm * int -> string * string list
- (* structured proofs *)
- val structured_proof: string ->
- string * string vector * (int * int) * Proof.context * thm * int -> string * string list
-end;
-
-structure Res_Reconstruct : RES_RECONSTRUCT =
-struct
-
-val trace_path = Path.basic "atp_trace";
-
-fun trace s =
- if ! Res_Axioms.trace then File.append (File.tmp_path trace_path) s
- else ();
-
-fun string_of_thm ctxt = PrintMode.setmp [] (Display.string_of_thm ctxt);
-
-(*For generating structured proofs: keep every nth proof line*)
-val (modulus, modulus_setup) = Attrib.config_int "sledgehammer_modulus" 1;
-
-(*Indicates whether to include sort information in generated proofs*)
-val (recon_sorts, recon_sorts_setup) = Attrib.config_bool "sledgehammer_sorts" true;
-
-(*Indicated whether to generate full proofs or just lemma lists - now via setup of atps*)
-(* val (full_proofs, full_proofs_setup) = Attrib.config_bool "sledgehammer_full" false; *)
-
-val setup = modulus_setup #> recon_sorts_setup;
-
-(**** PARSING OF TSTP FORMAT ****)
-
-(*Syntax trees, either termlist or formulae*)
-datatype stree = Int of int | Br of string * stree list;
-
-fun atom x = Br(x,[]);
-
-fun scons (x,y) = Br("cons", [x,y]);
-val listof = List.foldl scons (atom "nil");
-
-(*Strings enclosed in single quotes, e.g. filenames*)
-val quoted = $$"'" |-- Scan.repeat (~$$"'") --| $$"'" >> implode;
-
-(*Intended for $true and $false*)
-fun tf s = "c_" ^ str (Char.toUpper (String.sub(s,0))) ^ String.extract(s,1,NONE);
-val truefalse = $$"$" |-- Symbol.scan_id >> (atom o tf);
-
-(*Integer constants, typically proof line numbers*)
-fun is_digit s = Char.isDigit (String.sub(s,0));
-val integer = Scan.many1 is_digit >> (the o Int.fromString o implode);
-
-(*Generalized FO terms, which include filenames, numbers, etc.*)
-fun termlist x = (term ::: Scan.repeat ($$"," |-- term)) x
-and term x = (quoted >> atom || integer>>Int || truefalse ||
- Symbol.scan_id -- Scan.optional ($$"(" |-- termlist --| $$")") [] >> Br ||
- $$"(" |-- term --| $$")" ||
- $$"[" |-- Scan.optional termlist [] --| $$"]" >> listof) x;
-
-fun negate t = Br("c_Not", [t]);
-fun equate (t1,t2) = Br("c_equal", [t1,t2]);
-
-(*Apply equal or not-equal to a term*)
-fun syn_equal (t, NONE) = t
- | syn_equal (t1, SOME (NONE, t2)) = equate (t1,t2)
- | syn_equal (t1, SOME (SOME _, t2)) = negate (equate (t1,t2));
-
-(*Literals can involve negation, = and !=.*)
-fun literal x = ($$"~" |-- literal >> negate ||
- (term -- Scan.option (Scan.option ($$"!") --| $$"=" -- term) >> syn_equal)) x;
-
-val literals = literal ::: Scan.repeat ($$"|" |-- literal);
-
-(*Clause: a list of literals separated by the disjunction sign*)
-val clause = $$"(" |-- literals --| $$")" || Scan.single literal;
-
-val annotations = $$"," |-- term -- Scan.option ($$"," |-- termlist);
-
-(*<cnf_annotated> ::= cnf(<name>,<formula_role>,<cnf_formula><annotations>).
- The <name> could be an identifier, but we assume integers.*)
-val tstp_line = (Scan.this_string "cnf" -- $$"(") |--
- integer --| $$"," -- Symbol.scan_id --| $$"," --
- clause -- Scan.option annotations --| $$ ")";
-
-
-(**** INTERPRETATION OF TSTP SYNTAX TREES ****)
-
-exception STREE of stree;
-
-(*If string s has the prefix s1, return the result of deleting it.*)
-fun strip_prefix s1 s =
- if String.isPrefix s1 s
- then SOME (Res_Clause.undo_ascii_of (String.extract (s, size s1, NONE)))
- else NONE;
-
-(*Invert the table of translations between Isabelle and ATPs*)
-val type_const_trans_table_inv =
- Symtab.make (map swap (Symtab.dest Res_Clause.type_const_trans_table));
-
-fun invert_type_const c =
- case Symtab.lookup type_const_trans_table_inv c of
- SOME c' => c'
- | NONE => c;
-
-fun make_tvar b = TVar(("'" ^ b, 0), HOLogic.typeS);
-fun make_var (b,T) = Var((b,0),T);
-
-(*Type variables are given the basic sort, HOL.type. Some will later be constrained
- by information from type literals, or by type inference.*)
-fun type_of_stree t =
- case t of
- Int _ => raise STREE t
- | Br (a,ts) =>
- let val Ts = map type_of_stree ts
- in
- case strip_prefix Res_Clause.tconst_prefix a of
- SOME b => Type(invert_type_const b, Ts)
- | NONE =>
- if not (null ts) then raise STREE t (*only tconsts have type arguments*)
- else
- case strip_prefix Res_Clause.tfree_prefix a of
- SOME b => TFree("'" ^ b, HOLogic.typeS)
- | NONE =>
- case strip_prefix Res_Clause.tvar_prefix a of
- SOME b => make_tvar b
- | NONE => make_tvar a (*Variable from the ATP, say X1*)
- end;
-
-(*Invert the table of translations between Isabelle and ATPs*)
-val const_trans_table_inv =
- Symtab.update ("fequal", "op =")
- (Symtab.make (map swap (Symtab.dest Res_Clause.const_trans_table)));
-
-fun invert_const c =
- case Symtab.lookup const_trans_table_inv c of
- SOME c' => c'
- | NONE => c;
-
-(*The number of type arguments of a constant, zero if it's monomorphic*)
-fun num_typargs thy s = length (Sign.const_typargs thy (s, Sign.the_const_type thy s));
-
-(*Generates a constant, given its type arguments*)
-fun const_of thy (a,Ts) = Const(a, Sign.const_instance thy (a,Ts));
-
-(*First-order translation. No types are known for variables. HOLogic.typeT should allow
- them to be inferred.*)
-fun term_of_stree args thy t =
- case t of
- Int _ => raise STREE t
- | Br ("hBOOL",[t]) => term_of_stree [] thy t (*ignore hBOOL*)
- | Br ("hAPP",[t,u]) => term_of_stree (u::args) thy t
- | Br (a,ts) =>
- case strip_prefix Res_Clause.const_prefix a of
- SOME "equal" =>
- list_comb(Const ("op =", HOLogic.typeT), List.map (term_of_stree [] thy) ts)
- | SOME b =>
- let val c = invert_const b
- val nterms = length ts - num_typargs thy c
- val us = List.map (term_of_stree [] thy) (List.take(ts,nterms) @ args)
- (*Extra args from hAPP come AFTER any arguments given directly to the
- constant.*)
- val Ts = List.map type_of_stree (List.drop(ts,nterms))
- in list_comb(const_of thy (c, Ts), us) end
- | NONE => (*a variable, not a constant*)
- let val T = HOLogic.typeT
- val opr = (*a Free variable is typically a Skolem function*)
- case strip_prefix Res_Clause.fixed_var_prefix a of
- SOME b => Free(b,T)
- | NONE =>
- case strip_prefix Res_Clause.schematic_var_prefix a of
- SOME b => make_var (b,T)
- | NONE => make_var (a,T) (*Variable from the ATP, say X1*)
- in list_comb (opr, List.map (term_of_stree [] thy) (ts@args)) end;
-
-(*Type class literal applied to a type. Returns triple of polarity, class, type.*)
-fun constraint_of_stree pol (Br("c_Not",[t])) = constraint_of_stree (not pol) t
- | constraint_of_stree pol t = case t of
- Int _ => raise STREE t
- | Br (a,ts) =>
- (case (strip_prefix Res_Clause.class_prefix a, map type_of_stree ts) of
- (SOME b, [T]) => (pol, b, T)
- | _ => raise STREE t);
-
-(** Accumulate type constraints in a clause: negative type literals **)
-
-fun addix (key,z) = Vartab.map_default (key,[]) (cons z);
-
-fun add_constraint ((false, cl, TFree(a,_)), vt) = addix ((a,~1),cl) vt
- | add_constraint ((false, cl, TVar(ix,_)), vt) = addix (ix,cl) vt
- | add_constraint (_, vt) = vt;
-
-(*False literals (which E includes in its proofs) are deleted*)
-val nofalses = filter (not o equal HOLogic.false_const);
-
-(*Final treatment of the list of "real" literals from a clause.*)
-fun finish [] = HOLogic.true_const (*No "real" literals means only type information*)
- | finish lits =
- case nofalses lits of
- [] => HOLogic.false_const (*The empty clause, since we started with real literals*)
- | xs => foldr1 HOLogic.mk_disj (rev xs);
-
-(*Accumulate sort constraints in vt, with "real" literals in lits.*)
-fun lits_of_strees _ (vt, lits) [] = (vt, finish lits)
- | lits_of_strees ctxt (vt, lits) (t::ts) =
- lits_of_strees ctxt (add_constraint (constraint_of_stree true t, vt), lits) ts
- handle STREE _ =>
- lits_of_strees ctxt (vt, term_of_stree [] (ProofContext.theory_of ctxt) t :: lits) ts;
-
-(*Update TVars/TFrees with detected sort constraints.*)
-fun fix_sorts vt =
- let fun tysubst (Type (a, Ts)) = Type (a, map tysubst Ts)
- | tysubst (TVar (xi, s)) = TVar (xi, the_default s (Vartab.lookup vt xi))
- | tysubst (TFree (x, s)) = TFree (x, the_default s (Vartab.lookup vt (x, ~1)))
- fun tmsubst (Const (a, T)) = Const (a, tysubst T)
- | tmsubst (Free (a, T)) = Free (a, tysubst T)
- | tmsubst (Var (xi, T)) = Var (xi, tysubst T)
- | tmsubst (t as Bound _) = t
- | tmsubst (Abs (a, T, t)) = Abs (a, tysubst T, tmsubst t)
- | tmsubst (t $ u) = tmsubst t $ tmsubst u;
- in fn t => if Vartab.is_empty vt then t else tmsubst t end;
-
-(*Interpret a list of syntax trees as a clause, given by "real" literals and sort constraints.
- vt0 holds the initial sort constraints, from the conjecture clauses.*)
-fun clause_of_strees ctxt vt0 ts =
- let val (vt, dt) = lits_of_strees ctxt (vt0,[]) ts in
- singleton (Syntax.check_terms ctxt) (TypeInfer.constrain HOLogic.boolT (fix_sorts vt dt))
- end;
-
-fun gen_all_vars t = fold_rev Logic.all (OldTerm.term_vars t) t;
-
-fun ints_of_stree_aux (Int n, ns) = n::ns
- | ints_of_stree_aux (Br(_,ts), ns) = List.foldl ints_of_stree_aux ns ts;
-
-fun ints_of_stree t = ints_of_stree_aux (t, []);
-
-fun decode_tstp vt0 (name, role, ts, annots) ctxt =
- let val deps = case annots of NONE => [] | SOME (source,_) => ints_of_stree source
- val cl = clause_of_strees ctxt vt0 ts
- in ((name, role, cl, deps), fold Variable.declare_term (OldTerm.term_frees cl) ctxt) end;
-
-fun dest_tstp ((((name, role), ts), annots), chs) =
- case chs of
- "."::_ => (name, role, ts, annots)
- | _ => error ("TSTP line not terminated by \".\": " ^ implode chs);
-
-
-(** Global sort constraints on TFrees (from tfree_tcs) are positive unit clauses. **)
-
-fun add_tfree_constraint ((true, cl, TFree(a,_)), vt) = addix ((a,~1),cl) vt
- | add_tfree_constraint (_, vt) = vt;
-
-fun tfree_constraints_of_clauses vt [] = vt
- | tfree_constraints_of_clauses vt ([lit]::tss) =
- (tfree_constraints_of_clauses (add_tfree_constraint (constraint_of_stree true lit, vt)) tss
- handle STREE _ => (*not a positive type constraint: ignore*)
- tfree_constraints_of_clauses vt tss)
- | tfree_constraints_of_clauses vt (_::tss) = tfree_constraints_of_clauses vt tss;
-
-
-(**** Translation of TSTP files to Isar Proofs ****)
-
-fun decode_tstp_list ctxt tuples =
- let val vt0 = tfree_constraints_of_clauses Vartab.empty (map #3 tuples)
- in #1 (fold_map (decode_tstp vt0) tuples ctxt) end;
-
-(** Finding a matching assumption. The literals may be permuted, and variable names
- may disagree. We have to try all combinations of literals (quadratic!) and
- match up the variable names consistently. **)
-
-fun strip_alls_aux n (Const("all",_)$Abs(a,T,t)) =
- strip_alls_aux (n+1) (subst_bound (Var ((a,n), T), t))
- | strip_alls_aux _ t = t;
-
-val strip_alls = strip_alls_aux 0;
-
-exception MATCH_LITERAL;
-
-(*Ignore types: they are not to be trusted...*)
-fun match_literal (t1$u1) (t2$u2) env =
- match_literal t1 t2 (match_literal u1 u2 env)
- | match_literal (Abs (_,_,t1)) (Abs (_,_,t2)) env =
- match_literal t1 t2 env
- | match_literal (Bound i1) (Bound i2) env =
- if i1=i2 then env else raise MATCH_LITERAL
- | match_literal (Const(a1,_)) (Const(a2,_)) env =
- if a1=a2 then env else raise MATCH_LITERAL
- | match_literal (Free(a1,_)) (Free(a2,_)) env =
- if a1=a2 then env else raise MATCH_LITERAL
- | match_literal (Var(ix1,_)) (Var(ix2,_)) env = insert (op =) (ix1,ix2) env
- | match_literal _ _ _ = raise MATCH_LITERAL;
-
-(*Checking that all variable associations are unique. The list env contains no
- repetitions, but does it contain say (x,y) and (y,y)? *)
-fun good env =
- let val (xs,ys) = ListPair.unzip env
- in not (has_duplicates (op=) xs orelse has_duplicates (op=) ys) end;
-
-(*Match one list of literals against another, ignoring types and the order of
- literals. Sorting is unreliable because we don't have types or variable names.*)
-fun matches_aux _ [] [] = true
- | matches_aux env (lit::lits) ts =
- let fun match1 us [] = false
- | match1 us (t::ts) =
- let val env' = match_literal lit t env
- in (good env' andalso matches_aux env' lits (us@ts)) orelse
- match1 (t::us) ts
- end
- handle MATCH_LITERAL => match1 (t::us) ts
- in match1 [] ts end;
-
-(*Is this length test useful?*)
-fun matches (lits1,lits2) =
- length lits1 = length lits2 andalso
- matches_aux [] (map Envir.eta_contract lits1) (map Envir.eta_contract lits2);
-
-fun permuted_clause t =
- let val lits = HOLogic.disjuncts t
- fun perm [] = NONE
- | perm (ctm::ctms) =
- if matches (lits, HOLogic.disjuncts (HOLogic.dest_Trueprop (strip_alls ctm)))
- then SOME ctm else perm ctms
- in perm end;
-
-fun have_or_show "show " _ = "show \""
- | have_or_show have lname = have ^ lname ^ ": \""
-
-(*ctms is a list of conjecture clauses as yielded by Isabelle. Those returned by the
- ATP may have their literals reordered.*)
-fun isar_lines ctxt ctms =
- let val string_of = PrintMode.setmp [] (fn term => Syntax.string_of_term ctxt term)
- val _ = trace ("\n\nisar_lines: start\n")
- fun doline _ (lname, t, []) = (*No deps: it's a conjecture clause, with no proof.*)
- (case permuted_clause t ctms of
- SOME u => "assume " ^ lname ^ ": \"" ^ string_of u ^ "\"\n"
- | NONE => "assume? " ^ lname ^ ": \"" ^ string_of t ^ "\"\n") (*no match!!*)
- | doline have (lname, t, deps) =
- have_or_show have lname ^ string_of (gen_all_vars (HOLogic.mk_Trueprop t)) ^
- "\"\n by (metis " ^ space_implode " " deps ^ ")\n"
- fun dolines [(lname, t, deps)] = [doline "show " (lname, t, deps)]
- | dolines ((lname, t, deps)::lines) = doline "have " (lname, t, deps) :: dolines lines
- in setmp_CRITICAL show_sorts (Config.get ctxt recon_sorts) dolines end;
-
-fun notequal t (_,t',_) = not (t aconv t');
-
-(*No "real" literals means only type information*)
-fun eq_types t = t aconv HOLogic.true_const;
-
-fun replace_dep (old:int, new) dep = if dep=old then new else [dep];
-
-fun replace_deps (old:int, new) (lno, t, deps) =
- (lno, t, List.foldl (uncurry (union (op =))) [] (map (replace_dep (old, new)) deps));
-
-(*Discard axioms; consolidate adjacent lines that prove the same clause, since they differ
- only in type information.*)
-fun add_prfline ((lno, "axiom", t, []), lines) = (*axioms are not proof lines*)
- if eq_types t (*must be clsrel/clsarity: type information, so delete refs to it*)
- then map (replace_deps (lno, [])) lines
- else
- (case take_prefix (notequal t) lines of
- (_,[]) => lines (*no repetition of proof line*)
- | (pre, (lno', _, _) :: post) => (*repetition: replace later line by earlier one*)
- pre @ map (replace_deps (lno', [lno])) post)
- | add_prfline ((lno, _, t, []), lines) = (*no deps: conjecture clause*)
- (lno, t, []) :: lines
- | add_prfline ((lno, _, t, deps), lines) =
- if eq_types t then (lno, t, deps) :: lines
- (*Type information will be deleted later; skip repetition test.*)
- else (*FIXME: Doesn't this code risk conflating proofs involving different types??*)
- case take_prefix (notequal t) lines of
- (_,[]) => (lno, t, deps) :: lines (*no repetition of proof line*)
- | (pre, (lno', t', _) :: post) =>
- (lno, t', deps) :: (*repetition: replace later line by earlier one*)
- (pre @ map (replace_deps (lno', [lno])) post);
-
-(*Recursively delete empty lines (type information) from the proof.*)
-fun add_nonnull_prfline ((lno, t, []), lines) = (*no dependencies, so a conjecture clause*)
- if eq_types t (*must be type information, tfree_tcs, clsrel, clsarity: delete refs to it*)
- then delete_dep lno lines
- else (lno, t, []) :: lines
- | add_nonnull_prfline ((lno, t, deps), lines) = (lno, t, deps) :: lines
-and delete_dep lno lines = List.foldr add_nonnull_prfline [] (map (replace_deps (lno, [])) lines);
-
-fun bad_free (Free (a,_)) = String.isPrefix "sko_" a
- | bad_free _ = false;
-
-(*TVars are forbidden in goals. Also, we don't want lines with <2 dependencies.
- To further compress proofs, setting modulus:=n deletes every nth line, and nlines
- counts the number of proof lines processed so far.
- Deleted lines are replaced by their own dependencies. Note that the "add_nonnull_prfline"
- phase may delete some dependencies, hence this phase comes later.*)
-fun add_wanted_prfline ctxt ((lno, t, []), (nlines, lines)) =
- (nlines, (lno, t, []) :: lines) (*conjecture clauses must be kept*)
- | add_wanted_prfline ctxt ((lno, t, deps), (nlines, lines)) =
- if eq_types t orelse not (null (Term.add_tvars t [])) orelse
- exists_subterm bad_free t orelse
- (not (null lines) andalso (*final line can't be deleted for these reasons*)
- (length deps < 2 orelse nlines mod (Config.get ctxt modulus) <> 0))
- then (nlines+1, map (replace_deps (lno, deps)) lines) (*Delete line*)
- else (nlines+1, (lno, t, deps) :: lines);
-
-(*Replace numeric proof lines by strings, either from thm_names or sequential line numbers*)
-fun stringify_deps thm_names deps_map [] = []
- | stringify_deps thm_names deps_map ((lno, t, deps) :: lines) =
- if lno <= Vector.length thm_names (*axiom*)
- then (Vector.sub(thm_names,lno-1), t, []) :: stringify_deps thm_names deps_map lines
- else let val lname = Int.toString (length deps_map)
- fun fix lno = if lno <= Vector.length thm_names
- then SOME(Vector.sub(thm_names,lno-1))
- else AList.lookup op= deps_map lno;
- in (lname, t, map_filter fix (distinct (op=) deps)) ::
- stringify_deps thm_names ((lno,lname)::deps_map) lines
- end;
-
-val proofstart = "proof (neg_clausify)\n";
-
-fun isar_header [] = proofstart
- | isar_header ts = proofstart ^ "fix " ^ space_implode " " ts ^ "\n";
-
-fun decode_tstp_file cnfs ctxt th sgno thm_names =
- let val _ = trace "\ndecode_tstp_file: start\n"
- val tuples = map (dest_tstp o tstp_line o explode) cnfs
- val _ = trace (Int.toString (length tuples) ^ " tuples extracted\n")
- val ctxt = ProofContext.set_mode ProofContext.mode_schematic ctxt
- val raw_lines = List.foldr add_prfline [] (decode_tstp_list ctxt tuples)
- val _ = trace (Int.toString (length raw_lines) ^ " raw_lines extracted\n")
- val nonnull_lines = List.foldr add_nonnull_prfline [] raw_lines
- val _ = trace (Int.toString (length nonnull_lines) ^ " nonnull_lines extracted\n")
- val (_,lines) = List.foldr (add_wanted_prfline ctxt) (0,[]) nonnull_lines
- val _ = trace (Int.toString (length lines) ^ " lines extracted\n")
- val (ccls,fixes) = Res_Axioms.neg_conjecture_clauses ctxt th sgno
- val _ = trace (Int.toString (length ccls) ^ " conjecture clauses\n")
- val ccls = map forall_intr_vars ccls
- val _ =
- if ! Res_Axioms.trace then app (fn th => trace ("\nccl: " ^ string_of_thm ctxt th)) ccls
- else ()
- val ilines = isar_lines ctxt (map prop_of ccls) (stringify_deps thm_names [] lines)
- val _ = trace "\ndecode_tstp_file: finishing\n"
- in
- isar_header (map #1 fixes) ^ implode ilines ^ "qed\n"
- end handle STREE _ => error "Could not extract proof (ATP output malformed?)";
-
-
-(*=== EXTRACTING PROOF-TEXT === *)
-
-val begin_proof_strings = ["# SZS output start CNFRefutation.",
- "=========== Refutation ==========",
- "Here is a proof"];
-
-val end_proof_strings = ["# SZS output end CNFRefutation",
- "======= End of refutation =======",
- "Formulae used in the proof"];
-
-fun get_proof_extract proof =
- let
- (*splits to_split by the first possible of a list of splitters*)
- val (begin_string, end_string) =
- (find_first (fn s => String.isSubstring s proof) begin_proof_strings,
- find_first (fn s => String.isSubstring s proof) end_proof_strings)
- in
- if is_none begin_string orelse is_none end_string
- then error "Could not extract proof (no substring indicating a proof)"
- else proof |> first_field (the begin_string) |> the |> snd
- |> first_field (the end_string) |> the |> fst
- end;
-
-(* ==== CHECK IF PROOF OF E OR VAMPIRE WAS SUCCESSFUL === *)
-
-val failure_strings_E = ["SZS status: Satisfiable","SZS status Satisfiable",
- "SZS status: ResourceOut","SZS status ResourceOut","# Cannot determine problem status"];
-val failure_strings_vampire = ["Satisfiability detected", "Refutation not found", "CANNOT PROVE"];
-val failure_strings_SPASS = ["SPASS beiseite: Completion found.",
- "SPASS beiseite: Ran out of time.", "SPASS beiseite: Maximal number of loops exceeded."];
-val failure_strings_remote = ["Remote-script could not extract proof"];
-fun find_failure proof =
- let val failures =
- map_filter (fn s => if String.isSubstring s proof then SOME s else NONE)
- (failure_strings_E @ failure_strings_vampire @ failure_strings_SPASS @ failure_strings_remote)
- val correct = null failures andalso
- exists (fn s => String.isSubstring s proof) begin_proof_strings andalso
- exists (fn s => String.isSubstring s proof) end_proof_strings
- in
- if correct then NONE
- else if null failures then SOME "Output of ATP not in proper format"
- else SOME (hd failures) end;
-
-(* === EXTRACTING LEMMAS === *)
-(* lines have the form "cnf(108, axiom, ...",
-the number (108) has to be extracted)*)
-fun get_step_nums false proofextract =
- let val toks = String.tokens (not o Char.isAlphaNum)
- fun inputno ("cnf"::ntok::"axiom"::_) = Int.fromString ntok
- | inputno ("cnf"::ntok::"negated"::"conjecture"::_) = Int.fromString ntok
- | inputno _ = NONE
- val lines = split_lines proofextract
- in map_filter (inputno o toks) lines end
-(*String contains multiple lines. We want those of the form
- "253[0:Inp] et cetera..."
- A list consisting of the first number in each line is returned. *)
-| get_step_nums true proofextract =
- let val toks = String.tokens (not o Char.isAlphaNum)
- fun inputno (ntok::"0"::"Inp"::_) = Int.fromString ntok
- | inputno _ = NONE
- val lines = split_lines proofextract
- in map_filter (inputno o toks) lines end
-
-(*extracting lemmas from tstp-output between the lines from above*)
-fun extract_lemmas get_step_nums (proof, thm_names, conj_count, _, _, _) =
- let
- (* get the names of axioms from their numbers*)
- fun get_axiom_names thm_names step_nums =
- let
- val last_axiom = Vector.length thm_names
- fun is_axiom n = n <= last_axiom
- fun is_conj n = n >= fst conj_count andalso n < fst conj_count + snd conj_count
- fun getname i = Vector.sub(thm_names, i-1)
- in
- (sort_distinct string_ord (filter (fn x => x <> "??.unknown")
- (map getname (filter is_axiom step_nums))),
- exists is_conj step_nums)
- end
- val proofextract = get_proof_extract proof
- in
- get_axiom_names thm_names (get_step_nums proofextract)
- end;
-
-(*Used to label theorems chained into the sledgehammer call*)
-val chained_hint = "CHAINED";
-val nochained = filter_out (fn y => y = chained_hint)
-
-(* metis-command *)
-fun metis_line [] = "apply metis"
- | metis_line xs = "apply (metis " ^ space_implode " " xs ^ ")"
-
-(* atp_minimize [atp=<prover>] <lemmas> *)
-fun minimize_line _ [] = ""
- | minimize_line name lemmas = "For minimizing the number of lemmas try this command:\n" ^
- (Markup.markup Markup.sendback) ("atp_minimize [atp=" ^ name ^ "] " ^
- space_implode " " (nochained lemmas))
-
-fun sendback_metis_nochained lemmas =
- (Markup.markup Markup.sendback o metis_line) (nochained lemmas)
-
-fun lemma_list dfg name result =
- let val (lemmas, used_conj) = extract_lemmas (get_step_nums dfg) result
- in (sendback_metis_nochained lemmas ^ "\n" ^ minimize_line name lemmas ^
- (if used_conj then ""
- else "\nWarning: Goal is provable because context is inconsistent."),
- nochained lemmas)
- end;
-
-(* === Extracting structured Isar-proof === *)
-fun structured_proof name (result as (proof, thm_names, conj_count, ctxt, goal, subgoalno)) =
- let
- (*Could use split_lines, but it can return blank lines...*)
- val lines = String.tokens (equal #"\n");
- val nospaces = String.translate (fn c => if Char.isSpace c then "" else str c)
- val proofextract = get_proof_extract proof
- val cnfs = filter (String.isPrefix "cnf(") (map nospaces (lines proofextract))
- val (one_line_proof, lemma_names) = lemma_list false name result
- val structured =
- if chained_hint mem_string (String.tokens (fn c => c = #" ") one_line_proof) then ""
- else decode_tstp_file cnfs ctxt goal subgoalno thm_names
- in
- (one_line_proof ^ "\n\n" ^ Markup.markup Markup.sendback structured, lemma_names)
-end
-
-end;