--- a/src/HOL/Order_Relation.thy Fri Jan 17 10:02:49 2014 +0100
+++ b/src/HOL/Order_Relation.thy Fri Jan 17 10:02:50 2014 +0100
@@ -6,7 +6,7 @@
header {* Orders as Relations *}
theory Order_Relation
-imports Wellfounded
+imports Wfrec
begin
subsection{* Orders on a set *}
@@ -303,4 +303,183 @@
order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast
qed
+
+subsection {* Variations on Well-Founded Relations *}
+
+text {*
+This subsection contains some variations of the results from @{theory Wellfounded}:
+\begin{itemize}
+\item means for slightly more direct definitions by well-founded recursion;
+\item variations of well-founded induction;
+\item means for proving a linear order to be a well-order.
+\end{itemize}
+*}
+
+
+subsubsection {* Well-founded recursion via genuine fixpoints *}
+
+lemma wfrec_fixpoint:
+fixes r :: "('a * 'a) set" and
+ H :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+assumes WF: "wf r" and ADM: "adm_wf r H"
+shows "wfrec r H = H (wfrec r H)"
+proof(rule ext)
+ fix x
+ have "wfrec r H x = H (cut (wfrec r H) r x) x"
+ using wfrec[of r H] WF by simp
+ also
+ {have "\<And> y. (y,x) : r \<Longrightarrow> (cut (wfrec r H) r x) y = (wfrec r H) y"
+ by (auto simp add: cut_apply)
+ hence "H (cut (wfrec r H) r x) x = H (wfrec r H) x"
+ using ADM adm_wf_def[of r H] by auto
+ }
+ finally show "wfrec r H x = H (wfrec r H) x" .
+qed
+
+
+subsubsection {* Characterizations of well-foundedness *}
+
+text {* A transitive relation is well-founded iff it is ``locally'' well-founded,
+i.e., iff its restriction to the lower bounds of of any element is well-founded. *}
+
+lemma trans_wf_iff:
+assumes "trans r"
+shows "wf r = (\<forall>a. wf(r Int (r^-1``{a} \<times> r^-1``{a})))"
+proof-
+ obtain R where R_def: "R = (\<lambda> a. r Int (r^-1``{a} \<times> r^-1``{a}))" by blast
+ {assume *: "wf r"
+ {fix a
+ have "wf(R a)"
+ using * R_def wf_subset[of r "R a"] by auto
+ }
+ }
+ (* *)
+ moreover
+ {assume *: "\<forall>a. wf(R a)"
+ have "wf r"
+ proof(unfold wf_def, clarify)
+ fix phi a
+ assume **: "\<forall>a. (\<forall>b. (b,a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a"
+ obtain chi where chi_def: "chi = (\<lambda>b. (b,a) \<in> r \<longrightarrow> phi b)" by blast
+ with * have "wf (R a)" by auto
+ hence "(\<forall>b. (\<forall>c. (c,b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)"
+ unfolding wf_def by blast
+ moreover
+ have "\<forall>b. (\<forall>c. (c,b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b"
+ proof(auto simp add: chi_def R_def)
+ fix b
+ assume 1: "(b,a) \<in> r" and 2: "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c"
+ hence "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c"
+ using assms trans_def[of r] by blast
+ thus "phi b" using ** by blast
+ qed
+ ultimately have "\<forall>b. chi b" by (rule mp)
+ with ** chi_def show "phi a" by blast
+ qed
+ }
+ ultimately show ?thesis using R_def by blast
+qed
+
+text {* The next lemma is a variation of @{text "wf_eq_minimal"} from Wellfounded,
+allowing one to assume the set included in the field. *}
+
+lemma wf_eq_minimal2:
+"wf r = (\<forall>A. A <= Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. \<not> (a',a) \<in> r))"
+proof-
+ let ?phi = "\<lambda> A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. \<not> (a',a) \<in> r)"
+ have "wf r = (\<forall>A. ?phi A)"
+ by (auto simp: ex_in_conv [THEN sym], erule wfE_min, assumption, blast)
+ (rule wfI_min, fast)
+ (* *)
+ also have "(\<forall>A. ?phi A) = (\<forall>B \<le> Field r. ?phi B)"
+ proof
+ assume "\<forall>A. ?phi A"
+ thus "\<forall>B \<le> Field r. ?phi B" by simp
+ next
+ assume *: "\<forall>B \<le> Field r. ?phi B"
+ show "\<forall>A. ?phi A"
+ proof(clarify)
+ fix A::"'a set" assume **: "A \<noteq> {}"
+ obtain B where B_def: "B = A Int (Field r)" by blast
+ show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r"
+ proof(cases "B = {}")
+ assume Case1: "B = {}"
+ obtain a where 1: "a \<in> A \<and> a \<notin> Field r"
+ using ** Case1 unfolding B_def by blast
+ hence "\<forall>a' \<in> A. (a',a) \<notin> r" using 1 unfolding Field_def by blast
+ thus ?thesis using 1 by blast
+ next
+ assume Case2: "B \<noteq> {}" have 1: "B \<le> Field r" unfolding B_def by blast
+ obtain a where 2: "a \<in> B \<and> (\<forall>a' \<in> B. (a',a) \<notin> r)"
+ using Case2 1 * by blast
+ have "\<forall>a' \<in> A. (a',a) \<notin> r"
+ proof(clarify)
+ fix a' assume "a' \<in> A" and **: "(a',a) \<in> r"
+ hence "a' \<in> B" unfolding B_def Field_def by blast
+ thus False using 2 ** by blast
+ qed
+ thus ?thesis using 2 unfolding B_def by blast
+ qed
+ qed
+ qed
+ finally show ?thesis by blast
+qed
+
+
+subsubsection {* Characterizations of well-foundedness *}
+
+text {* The next lemma and its corollary enable one to prove that
+a linear order is a well-order in a way which is more standard than
+via well-foundedness of the strict version of the relation. *}
+
+lemma Linear_order_wf_diff_Id:
+assumes LI: "Linear_order r"
+shows "wf(r - Id) = (\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r))"
+proof(cases "r \<le> Id")
+ assume Case1: "r \<le> Id"
+ hence temp: "r - Id = {}" by blast
+ hence "wf(r - Id)" by (simp add: temp)
+ moreover
+ {fix A assume *: "A \<le> Field r" and **: "A \<noteq> {}"
+ obtain a where 1: "r = {} \<or> r = {(a,a)}" using LI
+ unfolding order_on_defs using Case1 Total_subset_Id by auto
+ hence "A = {a} \<and> r = {(a,a)}" using * ** unfolding Field_def by blast
+ hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" using 1 by blast
+ }
+ ultimately show ?thesis by blast
+next
+ assume Case2: "\<not> r \<le> Id"
+ hence 1: "Field r = Field(r - Id)" using Total_Id_Field LI
+ unfolding order_on_defs by blast
+ show ?thesis
+ proof
+ assume *: "wf(r - Id)"
+ show "\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r)"
+ proof(clarify)
+ fix A assume **: "A \<le> Field r" and ***: "A \<noteq> {}"
+ hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id"
+ using 1 * unfolding wf_eq_minimal2 by simp
+ moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. ((a,a') \<in> r) = ((a',a) \<notin> r - Id)"
+ using Linear_order_in_diff_Id[of r] ** LI by blast
+ ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" by blast
+ qed
+ next
+ assume *: "\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r)"
+ show "wf(r - Id)"
+ proof(unfold wf_eq_minimal2, clarify)
+ fix A assume **: "A \<le> Field(r - Id)" and ***: "A \<noteq> {}"
+ hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r"
+ using 1 * by simp
+ moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. ((a,a') \<in> r) = ((a',a) \<notin> r - Id)"
+ using Linear_order_in_diff_Id[of r] ** LI mono_Field[of "r - Id" r] by blast
+ ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" by blast
+ qed
+ qed
+qed
+
+corollary Linear_order_Well_order_iff:
+assumes "Linear_order r"
+shows "Well_order r = (\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r))"
+using assms unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast
+
end