--- a/src/HOL/Hyperreal/HyperDef.ML Tue Jan 09 15:29:17 2001 +0100
+++ b/src/HOL/Hyperreal/HyperDef.ML Tue Jan 09 15:32:27 2001 +0100
@@ -206,11 +206,11 @@
simpset() addsimps [FreeUltrafilterNat_Nat_set]));
qed "equiv_hyprel";
-(* (hyprel ``` {x} = hyprel ``` {y}) = ((x,y) : hyprel) *)
+(* (hyprel `` {x} = hyprel `` {y}) = ((x,y) : hyprel) *)
bind_thm ("equiv_hyprel_iff",
[equiv_hyprel, UNIV_I, UNIV_I] MRS eq_equiv_class_iff);
-Goalw [hypreal_def,hyprel_def,quotient_def] "hyprel```{x}:hypreal";
+Goalw [hypreal_def,hyprel_def,quotient_def] "hyprel``{x}:hypreal";
by (Blast_tac 1);
qed "hyprel_in_hypreal";
@@ -230,7 +230,7 @@
by (rtac Rep_hypreal_inverse 1);
qed "inj_Rep_hypreal";
-Goalw [hyprel_def] "x: hyprel ``` {x}";
+Goalw [hyprel_def] "x: hyprel `` {x}";
by (Step_tac 1);
by (auto_tac (claset() addSIs [FreeUltrafilterNat_Nat_set], simpset()));
qed "lemma_hyprel_refl";
@@ -267,7 +267,7 @@
qed "inj_hypreal_of_real";
val [prem] = goal (the_context ())
- "(!!x y. z = Abs_hypreal(hyprel```{x}) ==> P) ==> P";
+ "(!!x y. z = Abs_hypreal(hyprel``{x}) ==> P) ==> P";
by (res_inst_tac [("x1","z")]
(rewrite_rule [hypreal_def] Rep_hypreal RS quotientE) 1);
by (dres_inst_tac [("f","Abs_hypreal")] arg_cong 1);
@@ -278,13 +278,13 @@
(**** hypreal_minus: additive inverse on hypreal ****)
Goalw [congruent_def]
- "congruent hyprel (%X. hyprel```{%n. - (X n)})";
+ "congruent hyprel (%X. hyprel``{%n. - (X n)})";
by Safe_tac;
by (ALLGOALS Ultra_tac);
qed "hypreal_minus_congruent";
Goalw [hypreal_minus_def]
- "- (Abs_hypreal(hyprel```{%n. X n})) = Abs_hypreal(hyprel ``` {%n. -(X n)})";
+ "- (Abs_hypreal(hyprel``{%n. X n})) = Abs_hypreal(hyprel `` {%n. -(X n)})";
by (res_inst_tac [("f","Abs_hypreal")] arg_cong 1);
by (simp_tac (simpset() addsimps
[hyprel_in_hypreal RS Abs_hypreal_inverse,
@@ -322,20 +322,20 @@
(**** hyperreal addition: hypreal_add ****)
Goalw [congruent2_def]
- "congruent2 hyprel (%X Y. hyprel```{%n. X n + Y n})";
+ "congruent2 hyprel (%X Y. hyprel``{%n. X n + Y n})";
by Safe_tac;
by (ALLGOALS(Ultra_tac));
qed "hypreal_add_congruent2";
Goalw [hypreal_add_def]
- "Abs_hypreal(hyprel```{%n. X n}) + Abs_hypreal(hyprel```{%n. Y n}) = \
-\ Abs_hypreal(hyprel```{%n. X n + Y n})";
+ "Abs_hypreal(hyprel``{%n. X n}) + Abs_hypreal(hyprel``{%n. Y n}) = \
+\ Abs_hypreal(hyprel``{%n. X n + Y n})";
by (simp_tac (simpset() addsimps
[[equiv_hyprel, hypreal_add_congruent2] MRS UN_equiv_class2]) 1);
qed "hypreal_add";
-Goal "Abs_hypreal(hyprel```{%n. X n}) - Abs_hypreal(hyprel```{%n. Y n}) = \
-\ Abs_hypreal(hyprel```{%n. X n - Y n})";
+Goal "Abs_hypreal(hyprel``{%n. X n}) - Abs_hypreal(hyprel``{%n. Y n}) = \
+\ Abs_hypreal(hyprel``{%n. X n - Y n})";
by (simp_tac (simpset() addsimps
[hypreal_diff_def, hypreal_minus,hypreal_add]) 1);
qed "hypreal_diff";
@@ -496,14 +496,14 @@
(**** hyperreal multiplication: hypreal_mult ****)
Goalw [congruent2_def]
- "congruent2 hyprel (%X Y. hyprel```{%n. X n * Y n})";
+ "congruent2 hyprel (%X Y. hyprel``{%n. X n * Y n})";
by Safe_tac;
by (ALLGOALS(Ultra_tac));
qed "hypreal_mult_congruent2";
Goalw [hypreal_mult_def]
- "Abs_hypreal(hyprel```{%n. X n}) * Abs_hypreal(hyprel```{%n. Y n}) = \
-\ Abs_hypreal(hyprel```{%n. X n * Y n})";
+ "Abs_hypreal(hyprel``{%n. X n}) * Abs_hypreal(hyprel``{%n. Y n}) = \
+\ Abs_hypreal(hyprel``{%n. X n * Y n})";
by (simp_tac (simpset() addsimps
[[equiv_hyprel, hypreal_mult_congruent2] MRS UN_equiv_class2]) 1);
qed "hypreal_mult";
@@ -622,13 +622,13 @@
(**** multiplicative inverse on hypreal ****)
Goalw [congruent_def]
- "congruent hyprel (%X. hyprel```{%n. if X n = #0 then #0 else inverse(X n)})";
+ "congruent hyprel (%X. hyprel``{%n. if X n = #0 then #0 else inverse(X n)})";
by (Auto_tac THEN Ultra_tac 1);
qed "hypreal_inverse_congruent";
Goalw [hypreal_inverse_def]
- "inverse (Abs_hypreal(hyprel```{%n. X n})) = \
-\ Abs_hypreal(hyprel ``` {%n. if X n = #0 then #0 else inverse(X n)})";
+ "inverse (Abs_hypreal(hyprel``{%n. X n})) = \
+\ Abs_hypreal(hyprel `` {%n. if X n = #0 then #0 else inverse(X n)})";
by (res_inst_tac [("f","Abs_hypreal")] arg_cong 1);
by (simp_tac (simpset() addsimps
[hyprel_in_hypreal RS Abs_hypreal_inverse,
@@ -800,8 +800,8 @@
makes many of them more straightforward.
-------------------------------------------------------*)
Goalw [hypreal_less_def]
- "(Abs_hypreal(hyprel```{%n. X n}) < \
-\ Abs_hypreal(hyprel```{%n. Y n})) = \
+ "(Abs_hypreal(hyprel``{%n. X n}) < \
+\ Abs_hypreal(hyprel``{%n. Y n})) = \
\ ({n. X n < Y n} : FreeUltrafilterNat)";
by (auto_tac (claset() addSIs [lemma_hyprel_refl], simpset()));
by (Ultra_tac 1);
@@ -840,7 +840,7 @@
Trichotomy of the hyperreals
--------------------------------------------------------------------------------*)
-Goalw [hyprel_def] "EX x. x: hyprel ``` {%n. #0}";
+Goalw [hyprel_def] "EX x. x: hyprel `` {%n. #0}";
by (res_inst_tac [("x","%n. #0")] exI 1);
by (Step_tac 1);
by (auto_tac (claset() addSIs [FreeUltrafilterNat_Nat_set], simpset()));
@@ -958,8 +958,8 @@
(*------ hypreal le iff reals le a.e ------*)
Goalw [hypreal_le_def,real_le_def]
- "(Abs_hypreal(hyprel```{%n. X n}) <= \
-\ Abs_hypreal(hyprel```{%n. Y n})) = \
+ "(Abs_hypreal(hyprel``{%n. X n}) <= \
+\ Abs_hypreal(hyprel``{%n. Y n})) = \
\ ({n. X n <= Y n} : FreeUltrafilterNat)";
by (auto_tac (claset(),simpset() addsimps [hypreal_less]));
by (ALLGOALS(Ultra_tac));