src/HOL/Tools/ATP/recon_transfer_proof.ML
changeset 20762 a7a5157c5e75
parent 20761 7a6f69cf5a86
child 20763 052b348a98a9
--- a/src/HOL/Tools/ATP/recon_transfer_proof.ML	Thu Sep 28 16:01:34 2006 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,638 +0,0 @@
-(*  ID:         $Id$
-    Author:     Claire Quigley
-    Copyright   2004  University of Cambridge
-*)
-
-structure Recon_Transfer =
-struct
-
-open Recon_Parse
-
-infixr 8 ++; infixr 7 >>; infixr 6 ||;
-
-val trace_path = Path.basic "transfer_trace";
-
-fun trace s = if !Output.show_debug_msgs then File.append (File.tmp_path trace_path) s 
-              else ();
-
-
-(* Versions that include type information *)
- 
-(* FIXME rename to str_of_thm *)
-fun string_of_thm thm =
-  setmp show_sorts true (Pretty.str_of o Display.pretty_thm) thm;
-
-
-(* check separate args in the watcher program for separating strings with a * or ; or something *)
-
-fun clause_strs_to_string [] str = str
-|   clause_strs_to_string (x::xs) str = clause_strs_to_string xs (str^x^"%")
-
-fun thmvars_to_string [] str = str
-|   thmvars_to_string (x::xs) str = thmvars_to_string xs (str^x^"%")
-
-
-fun proofstep_to_string Axiom = "Axiom()"
-|   proofstep_to_string  (Binary ((a,b), (c,d)))=
-      "Binary(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))"
-|   proofstep_to_string (Factor (a,b,c)) =
-      "Factor("^(string_of_int a)^","^(string_of_int b)^","^(string_of_int c)^")"
-|   proofstep_to_string  (Para ((a,b), (c,d)))= 
-      "Para(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))"
-|   proofstep_to_string  (MRR ((a,b), (c,d))) =
-      "MRR(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))"
-(*|   proofstep_to_string (Rewrite((a,b),(c,d))) =
-      "Rewrite(("^(string_of_int a)^","^(string_of_int b)^"),("^(string_of_int c)^","^(string_of_int d)^"))"*)
-
-
-fun proof_to_string (num,(step,clause_strs, thmvars)) =
- (string_of_int num)^(proofstep_to_string step)^
- "["^(clause_strs_to_string clause_strs "")^"]["^(thmvars_to_string thmvars "")^"]"
- 
-
-fun proofs_to_string [] str = str
-|   proofs_to_string (x::xs) str = proofs_to_string xs (str ^ proof_to_string x)
-
-
-fun init_proofstep_to_string (num, step, clause_strs) =
- (string_of_int num)^" "^(proofstep_to_string step)^" "^
- (clause_strs_to_string clause_strs "")^" "
-
-fun init_proofsteps_to_string [] str = str
-|   init_proofsteps_to_string (x::xs) str =
-      init_proofsteps_to_string xs (str ^ init_proofstep_to_string x)
-  
-
-
-(*** get a string representing the Isabelle ordered axioms ***)
-
-fun origAx_to_string (num,(meta,thmvars)) =
-    let val clause_strs = ReconOrderClauses.get_meta_lits_bracket meta
-    in
-       (string_of_int num)^"OrigAxiom()["^
-       (clause_strs_to_string clause_strs "")^"]["^
-       (thmvars_to_string thmvars "")^"]"
-    end
-
-
-fun  origAxs_to_string [] str = str
-|   origAxs_to_string (x::xs) str = 
-      origAxs_to_string xs (str ^ origAx_to_string x )
-
-
-(*** get a string representing the Isabelle ordered axioms not used in the spass proof***)
-
-fun extraAx_to_string (num, (meta,thmvars)) =
-   let val clause_strs = ReconOrderClauses.get_meta_lits_bracket meta
-   in
-      (string_of_int num)^"ExtraAxiom()["^
-      (clause_strs_to_string clause_strs "")^"]"^
-      "["^(thmvars_to_string thmvars "")^"]"
-   end;
-
-fun extraAxs_to_string [] str = str
-|   extraAxs_to_string (x::xs) str =
-      let val newstr = extraAx_to_string x 
-      in
-	  extraAxs_to_string xs (str^newstr)
-      end;
-
-fun is_axiom (_,Axiom,str) = true
-|   is_axiom (_,_,_) = false
-
-fun get_step_nums [] nums = nums
-|   get_step_nums (( num:int,Axiom, str)::xs) nums = get_step_nums xs (nums@[num])
-
-exception Noassoc;
-
-fun assoc_snd a [] = raise Noassoc
-  | assoc_snd a ((x, y)::t) = if a = y then x else assoc_snd a t;
-
-(* change to be something using check_order  instead of a = y --> returns true if ASSERTION not raised in checkorder, false otherwise *)
-
-(*fun get_assoc_snds [] xs assocs= assocs
-|   get_assoc_snds (x::xs) ys assocs = get_assoc_snds xs ys (assocs@[((assoc_snd x ys))])
-*)
-(*FIX - should this have vars in it? *)
-fun there_out_of_order xs ys = (ReconOrderClauses.checkorder xs ys [] ([],[],[]); true) 
-                               handle _ => false
-
-fun assoc_out_of_order a [] = raise Noassoc
-|   assoc_out_of_order a ((b,c)::t) = if there_out_of_order a c then b else assoc_out_of_order a t;
-
-fun get_assoc_snds [] xs assocs= assocs
-|   get_assoc_snds (x::xs) ys assocs = get_assoc_snds xs ys (assocs@[((assoc_out_of_order x ys))])
-
-fun add_if_not_inlist eq [] xs newlist = newlist
-|   add_if_not_inlist eq (y::ys) xs newlist =
-    if not (member eq xs y) then add_if_not_inlist eq ys xs (y::newlist)
-    else add_if_not_inlist eq ys xs newlist
-
-(*Flattens a list of list of strings to one string*)
-fun onestr ls = String.concat (map String.concat ls);
-
-
-(**** retrieve the axioms that were obtained from the clasimpset ****)
-
-(*Get names of axioms used. Axioms are indexed from 1, while the array is indexed from 0*)
-fun get_axiom_names (names_arr: string array) step_nums = 
-    let fun is_axiom n = n <= Array.length names_arr 
-        fun index i = Array.sub(names_arr, i-1)
-        val axnums = List.filter is_axiom step_nums
-        val axnames = sort_distinct string_ord (map index axnums)
-    in
-	if length axnums = length step_nums then "UNSOUND!!" :: axnames
-	else axnames
-    end
-
- (*String contains multiple lines. We want those of the form 
-     "253[0:Inp] et cetera..."
-  A list consisting of the first number in each line is returned. *)
-fun get_spass_linenums proofstr = 
-  let val toks = String.tokens (not o Char.isAlphaNum)
-      fun inputno (ntok::"0"::"Inp"::_) = Int.fromString ntok
-        | inputno _ = NONE
-      val lines = String.tokens (fn c => c = #"\n") proofstr
-  in  List.mapPartial (inputno o toks) lines  end
-
-fun get_axiom_names_spass proofstr names_arr =
-   get_axiom_names names_arr (get_spass_linenums proofstr);
-    
- (*String contains multiple lines. We want those of the form 
-   "number : ...: ...: initial..." *)
-fun get_e_linenums proofstr = 
-  let val fields = String.fields (fn c => c = #":")
-      val nospaces = String.translate (fn c => if c = #" " then "" else str c)
-      fun initial s = String.isPrefix "initial" (nospaces s)
-      fun firstno (line :: _ :: _ :: rule :: _) = 
-            if initial rule then Int.fromString line else NONE
-        | firstno _ = NONE
-      val lines = String.tokens (fn c => c = #"\n") proofstr
-  in  List.mapPartial (firstno o fields) lines  end
-
-fun get_axiom_names_e proofstr names_arr =
-   get_axiom_names names_arr (get_e_linenums proofstr);
-    
- (*String contains multiple lines. We want those of the form 
-     "*********** [448, input] ***********".
-  A list consisting of the first number in each line is returned. *)
-fun get_vamp_linenums proofstr = 
-  let val toks = String.tokens (not o Char.isAlphaNum)
-      fun inputno [ntok,"input"] = Int.fromString ntok
-        | inputno _ = NONE
-      val lines = String.tokens (fn c => c = #"\n") proofstr
-  in  List.mapPartial (inputno o toks) lines  end
-
-fun get_axiom_names_vamp proofstr names_arr =
-   get_axiom_names names_arr (get_vamp_linenums proofstr);
-    
-
-(***********************************************)
-(* get axioms for reconstruction               *)
-(***********************************************)
-fun numclstr (vars, []) str = str
-|   numclstr ( vars, ((num, thm)::rest)) str =
-      let val newstr = str^(string_of_int num)^" "^(string_of_thm thm)^" "
-      in
-        numclstr  (vars,rest) newstr
-      end
-
-fun addvars c (a,b)  = (a,b,c)
-
-fun get_axioms_used proof_steps thms names_arr  =
- let val axioms = (List.filter is_axiom) proof_steps
-     val step_nums = get_step_nums axioms []
-
-     val clauses = make_clauses thms    (*FIXME: must this be repeated??*)
-     
-     val vars = map thm_varnames clauses
-    
-     val distvars = distinct (op =) (fold append vars [])
-     val clause_terms = map prop_of clauses  
-     val clause_frees = List.concat (map term_frees clause_terms)
-
-     val frees = map lit_string_with_nums clause_frees;
-
-     val distfrees = distinct (op =) frees
-
-     val metas = map Meson.make_meta_clause clauses
-     val ax_strs = map #3 axioms
-
-     (* literals of -all- axioms, not just those used by spass *)
-     val meta_strs = map ReconOrderClauses.get_meta_lits metas
-    
-     val metas_and_strs = ListPair.zip (metas,meta_strs)
-     val _ = trace ("\nAxioms: " ^ onestr ax_strs)
-     val _ = trace ("\nMeta_strs: " ^ onestr meta_strs)
-
-     (* get list of axioms as thms with their variables *)
-
-     val ax_metas = get_assoc_snds ax_strs metas_and_strs []
-     val ax_vars = map thm_varnames ax_metas
-     val ax_with_vars = ListPair.zip (ax_metas,ax_vars)
-
-     (* get list of extra axioms as thms with their variables *)
-     val extra_metas = add_if_not_inlist Thm.eq_thm metas ax_metas []
-     val extra_vars = map thm_varnames extra_metas
-     val extra_with_vars = if not (null extra_metas)
-			   then ListPair.zip (extra_metas,extra_vars)
-			   else []
- in
-    (distfrees,distvars, extra_with_vars,ax_with_vars, ListPair.zip (step_nums,ax_metas))
- end;
-                                            
-
-(*********************************************************************)
-(* Pass in spass string of proof and string version of isabelle goal *)
-(* Get out reconstruction steps as a string to be sent to Isabelle   *)
-(*********************************************************************)
-
-fun rules_to_string [] = "NONE"
-  | rules_to_string xs = space_implode "  " xs
-
-
-(*The signal handler in watcher.ML must be able to read the output of this.*)
-fun prover_lemma_list_aux getax proofstr probfile toParent ppid names_arr = 
- let val _ = trace
-               ("\n\nGetting lemma names. proofstr is " ^ proofstr ^
-                "\nprobfile is " ^ probfile ^
-                "  num of clauses is " ^ string_of_int (Array.length names_arr))
-     val axiom_names = getax proofstr names_arr
-     val ax_str = rules_to_string axiom_names
-    in 
-	 trace ("\nDone. Lemma list is " ^ ax_str);
-         TextIO.output (toParent, "Success. Lemmas used in automatic proof: " ^
-                  ax_str ^ "\n");
-	 TextIO.output (toParent, probfile ^ "\n");
-	 TextIO.flushOut toParent;
-	 Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2)
-    end
-    handle exn => (*FIXME: exn handler is too general!*)
-     (trace ("\nprover_lemma_list_aux: In exception handler: " ^ 
-             Toplevel.exn_message exn);
-      TextIO.output (toParent, "Translation failed for the proof: " ^ 
-                     String.toString proofstr ^ "\n");
-      TextIO.output (toParent, probfile);
-      TextIO.flushOut toParent;
-      Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2));
-
-val e_lemma_list = prover_lemma_list_aux get_axiom_names_e;
-
-val vamp_lemma_list = prover_lemma_list_aux get_axiom_names_vamp;
-
-val spass_lemma_list = prover_lemma_list_aux get_axiom_names_spass;
-
-
-(**** Full proof reconstruction for SPASS (not really working) ****)
-
-fun spass_reconstruct proofstr probfile toParent ppid thms names_arr = 
-  let val _ = trace ("\nspass_reconstruct. Proofstr is "^proofstr)
-      val tokens = #1(lex proofstr)
-
-  (* parse spass proof into datatype *)
-  (***********************************)
-      val proof_steps = parse tokens
-      val _ = trace "\nParsing finished"
-    
-  (************************************)
-  (* recreate original subgoal as thm *)
-  (************************************)
-      (* get axioms as correctly numbered clauses w.r.t. the Spass proof *)
-      (* need to get prems_of thm, then get right one of the prems, relating to whichever*)
-      (* subgoal this is, and turn it into meta_clauses *)
-      (* should prob add array and table here, so that we can get axioms*)
-      (* produced from the clasimpset rather than the problem *)
-      val (frees,vars,extra_with_vars ,ax_with_vars,numcls) = get_axioms_used proof_steps  thms names_arr
-      
-      (*val numcls_string = numclstr ( vars, numcls) ""*)
-      val _ = trace "\ngot axioms"
-	
-  (************************************)
-  (* translate proof                  *)
-  (************************************)
-      val _ = trace ("\nabout to translate proof, steps: "
-                       ^ (init_proofsteps_to_string proof_steps ""))
-      val (newthm,proof) = translate_proof numcls  proof_steps vars
-      val _ = trace ("translated proof, steps: "^(init_proofsteps_to_string proof_steps ""))
-  (***************************************************)
-  (* transfer necessary steps as strings to Isabelle *)
-  (***************************************************)
-      (* turn the proof into a string *)
-      val reconProofStr = proofs_to_string proof ""
-      (* do the bit for the Isabelle ordered axioms at the top *)
-      val ax_nums = map #1 numcls
-      val ax_strs = map ReconOrderClauses.get_meta_lits_bracket (map #2 numcls)
-      val numcls_strs = ListPair.zip (ax_nums,ax_strs)
-      val num_cls_vars =  map (addvars vars) numcls_strs;
-      val reconIsaAxStr = origAxs_to_string (ListPair.zip (ax_nums,ax_with_vars)) ""
-      
-      val extra_nums = if not (null extra_with_vars) then (1 upto (length extra_with_vars))
-                       else []
-      val reconExtraAxStr = extraAxs_to_string ( ListPair.zip (extra_nums,extra_with_vars)) ""
-      val frees_str = "["^(thmvars_to_string frees "")^"]"
-      val reconstr = (frees_str^reconExtraAxStr^reconIsaAxStr^reconProofStr)
-      val _ = trace ("\nReconstruction:\n" ^ reconstr)
-  in 
-       TextIO.output (toParent, reconstr^"\n");
-       TextIO.output (toParent, probfile ^ "\n");
-       TextIO.flushOut toParent;
-       Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2);
-       all_tac
-  end
-  handle exn => (*FIXME: exn handler is too general!*)
-   (trace ("\nspass_reconstruct. In exception handler: " ^ Toplevel.exn_message exn);
-    TextIO.output (toParent,"Translation failed for SPASS proof:"^
-         String.toString proofstr ^"\n");
-    TextIO.output (toParent, probfile ^ "\n");
-    TextIO.flushOut toParent;
-    Posix.Process.kill(Posix.Process.K_PROC ppid, Posix.Signal.usr2); all_tac)
-
-(**********************************************************************************)
-(* At other end, want to turn back into datatype so can apply reconstruct_proof.  *)
-(* This will be done by the signal handler                                        *)
-(**********************************************************************************)
-
-(* Parse in the string version of the proof steps for reconstruction *)
-(* Isar format: cl1 [BINARY 0 cl2 0];cl1 [PARAMOD 0 cl2 0]; cl1 [DEMOD 0 cl2];cl1 [FACTOR 1 2];*)
-
-
- val term_numstep =
-        (number ++ (a (Other ",")) ++ number) >> (fn (a, (_, c)) => (a, c))
-
-val extraaxiomstep = (a (Word "ExtraAxiom"))++ (a (Other "(")) ++(a (Other ")"))
-            >> (fn (_) => ExtraAxiom)
-
-
-
-val origaxiomstep = (a (Word "OrigAxiom"))++ (a (Other "(")) ++(a (Other ")"))
-            >> (fn (_) => OrigAxiom)
-
-
- val axiomstep = (a (Word "Axiom"))++ (a (Other "(")) ++(a (Other ")"))
-            >> (fn (_) => Axiom)
-     
-
-
-      
- val binarystep = (a (Word "Binary")) ++ (a (Other "(")) ++ (a (Other "(")) 
-                   ++ term_numstep  ++ (a (Other ")")) ++ (a (Other ","))
-                   ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")"))
-            >> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => Binary (c,e))
-      
-
- val parastep = (a (Word "Para")) ++ (a (Other "(")) ++ (a (Other "(")) 
-                   ++ term_numstep  ++ (a (Other ")")) ++ (a (Other ","))
-                   ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")"))
-            >> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => Para(c, e))
-      
- val mrrstep = (a (Word "MRR")) ++ (a (Other "(")) ++ (a (Other "(")) 
-                   ++ term_numstep  ++ (a (Other ")")) ++ (a (Other ","))
-                   ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")"))
-            >> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => MRR(c, e))
-      
-
- val factorstep = (a (Word "Factor")) ++ (a (Other "("))
-                    ++ number ++ (a (Other ","))
-                       ++ number ++ (a (Other ","))
-                       ++ number ++  (a (Other ")"))
-                   
-            >> (fn (_, (_, (c, (_, (e,(_,(f,_))))))) =>  Factor (c,e,f))
-
-
-(*val rewritestep = (a (Word "Rewrite"))  ++ (a (Other "(")) ++ (a (Other "(")) 
-                   ++ term_numstep  ++ (a (Other ")")) ++ (a (Other ","))
-                   ++ (a (Other "(")) ++ term_numstep ++ (a (Other ")")) ++ (a (Other ")"))
-            >> (fn (_, (_, (_, (c, (_,(_,(_, (e,(_,_))))))))) => Rewrite (c,e))*)
-
-val obviousstep = (a (Word "Obvious")) ++ (a (Other "(")) 
-                   ++ term_numstep  ++ (a (Other ")")) 
-            >> (fn (_, (_, (c,_))) => Obvious (c))
-
- val methodstep = extraaxiomstep || origaxiomstep || axiomstep ||binarystep || factorstep|| parastep || mrrstep || (*rewritestep ||*) obviousstep
-
-
- val number_list_step =
-        ( number ++ many ((a (Other ",") ++ number)>> #2))
-        >> (fn (a,b) => (a::b))
-        
- val numberlist_step = a (Other "[")  ++ a (Other "]")
-                        >>(fn (_,_) => ([]:int list))
-                       || a (Other "[") ++ number_list_step ++ a (Other "]")
-                        >>(fn (_,(a,_)) => a)
-                    
-
-
-(** change this to allow P (x U) *)
- fun arglist_step input = 
-   ( word ++ many word >> (fn (a, b) => (a^" "^(space_implode " " b)))
-    ||word >> (fn (a) => (a)))input
-                
-
-fun literal_step input = (word ++ a (Other "(") ++ arglist_step ++  a (Other ")")
-                                          >>(fn (a, (b, (c,d))) => (a^" ("^(c)^")"))
-                        || arglist_step >> (fn (a) => (a)))input
-                           
-
-
-(* fun term_step input = (a (Other "~") ++ arglist_step ++ a (Other "%")>> (fn (a,(b,c)) => ("~ "^b))
-                     ||  arglist_step ++ a (Other "%")>> (fn (a,b) => a ))input
-*)
-
-
- fun term_step input = (a (Other "~") ++ literal_step ++ a (Other "%")>> (fn (a,(b,c)) => ("~ "^b))
-                     ||  literal_step ++ a (Other "%")>> (fn (a,b) => a ))input
-
-
-         
-
- val term_list_step =
-        (  term_step ++ many ( term_step))
-        >> (fn (a,b) => (a::b))
-        
- 
-val term_lists_step = a (Other "[")  ++ a (Other "]")
-                        >>(fn (_,_) => ([]:string list))
-                       || a (Other "[") ++ term_list_step ++ a (Other "]")
-                        >>(fn (_,(a,_)) => a)
-                     
-
- val linestep = number ++ methodstep ++ term_lists_step ++ term_lists_step
-                >> (fn (a, (b, (c,d))) => (a,(b,c,d)))
-    
- val lines_step = many linestep
-
- val alllines_step = (term_lists_step ++ lines_step ) ++ finished >> #1
-    
- val parse_step = #1 o alllines_step
-
-
- (*
-val reconstr ="[P%x%xa%xb%]1OrigAxiom()[P x%~ P U%][U%]3OrigAxiom()[P U%~ P x%][U%]5OrigAxiom()[~ P xa%~ P U%][U%]7OrigAxiom()[P U%P xb%][U%]1Axiom()[P x%~ P U%][U%]3Axiom()[P U%~ P x%][U%]5Axiom()[~ P U%~ P xa%][U%]7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[~ P xa%][]10Binary((9,0),(3,0))[~ P x%][]11Binary((10,0),(1,0))[~ P U%][U%]12Factor(7,0,1)[P xb%][]14Binary((11,0),(12,0))[][]%(EX x::'a::type. ALL y::'a::type. (P::'a::type => bool) x = P y) -->(EX x::'a::type. P x) = (ALL y::'a::type. P y)"
-*)
-
-(************************************************************)
-(* Construct an Isar style proof from a list of proof steps *)
-(************************************************************)
-(* want to assume all axioms, then do haves for the other clauses*)
-(* then show for the last step *)
-
-(* replace ~ by not here *)
-val change_nots = String.translate (fn c => if c = #"~" then "\\<not>" else str c);
-
-fun clstrs_to_string xs = space_implode "; " (map change_nots xs);
-
-fun thmvars_to_quantstring [] str = str
-|   thmvars_to_quantstring (x::[]) str =str^x^". "
-|   thmvars_to_quantstring (x::xs) str = thmvars_to_quantstring xs (str^(x^" "))
-
-
-fun clause_strs_to_isar clstrs [] =
-      "\"\\<lbrakk>"^(clstrs_to_string clstrs)^"\\<rbrakk> \\<Longrightarrow> False\""
-|   clause_strs_to_isar clstrs thmvars =
-      "\"\\<And>"^(thmvars_to_quantstring thmvars "")^
-      "\\<lbrakk>"^(clstrs_to_string clstrs)^"\\<rbrakk> \\<Longrightarrow> False\""
-
-fun frees_to_isar_str clstrs = space_implode " " (map change_nots clstrs)
-
-
-(***********************************************************************)
-(* functions for producing assumptions for the Isabelle ordered axioms *)
-(***********************************************************************)
-(*val str = "[P%x%xa%xb%]1OrigAxiom()[P x%~ P U%][U%]3OrigAxiom()[P U%~ P x%][U%]5OrigAxiom()[~ P xa%~ P U%][U%]7OrigAxiom()[P U%P xb%][U%]1Axiom()[P x%~ P U%][U%]3Axiom()[P U%~ P x%][U%]5Axiom()[~ P U%~ P xa%][U%]7Axiom()[P U%P xb%][U%]9Factor(5,0,1)[~ P xa%][]10Binary((9,0),(3,0))[~ P x%][]11Binary((10,0),(1,0))[~ P U%][U%]12Factor(7,0,1)[P xb%][]14Binary((11,0),(12,0))[][]";       
-num, rule, clausestrs, vars*)
-
-
-(* assume the extra clauses - not used in Spass proof *)
-
-fun is_extraaxiom_step ( num:int,(ExtraAxiom, str, tstr)) = true
-|   is_extraaxiom_step (num, _) = false
-
-fun get_extraaxioms xs = List.filter (is_extraaxiom_step) ( xs)
-
-fun assume_isar_extraaxiom [] str  = str
-|   assume_isar_extraaxiom ((numb,(step, clstr, thmvars))::xs) str  = assume_isar_extraaxiom xs (str^"and cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstr thmvars)^"\n " )
-
-
-
-fun assume_isar_extraaxioms  [] = ""
-|assume_isar_extraaxioms ((numb,(step, clstrs, thmstrs))::xs) = let val str = "assume cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstrs thmstrs)^"\n" 
-                                         in
-                                             assume_isar_extraaxiom xs str
-                                         end
-
-(* assume the Isabelle ordered clauses *)
-
-fun is_origaxiom_step ( num:int,(OrigAxiom, str, tstr)) = true
-|   is_origaxiom_step (num, _) = false
-
-fun get_origaxioms xs = List.filter (is_origaxiom_step) ( xs)
-
-fun assume_isar_origaxiom [] str  = str
-|   assume_isar_origaxiom ((numb,(step, clstr, thmvars))::xs) str  = assume_isar_origaxiom xs (str^"and cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstr thmvars)^"\n " )
-
-
-
-fun assume_isar_origaxioms ((numb,(step, clstrs, thmstrs))::xs) = let val str = "assume cl"^(string_of_int numb)^"': "^(clause_strs_to_isar clstrs thmstrs)^"\n" 
-                                         in
-                                             assume_isar_origaxiom xs str
-                                         end
-
-
-
-fun is_axiom_step ( num:int,(Axiom, str, tstr)) = true
-|   is_axiom_step (num, _) = false
-
-fun get_axioms xs = List.filter  (is_axiom_step) ( xs)
-
-fun have_isar_axiomline (numb,(step, clstrs, thmstrs))="have cl"^(string_of_int numb)^": "^(clause_strs_to_isar clstrs thmstrs)^"\n"
-
-fun  by_isar_axiomline (numb,(step, clstrs, thmstrs))="by (rule cl"^ (string_of_int numb)^"') \n"
-
-
-fun isar_axiomline (numb, (step, clstrs, thmstrs))  = (have_isar_axiomline (numb,(step,clstrs, thmstrs )))^( by_isar_axiomline(numb,(step,clstrs, thmstrs )) )
-
-
-fun isar_axiomlines [] str = str
-|   isar_axiomlines (x::xs) str = isar_axiomlines xs (str^(isar_axiomline x))
-
-
-fun have_isar_line (numb,(step, clstrs, thmstrs))="have cl"^(string_of_int numb)^": "^(clause_strs_to_isar clstrs thmstrs)^"\n"
-(*FIX: ask Larry to add and mrr attribute *)
-
-fun by_isar_line ((Binary ((a,b), (c,d)))) = 
-    "by(rule cl"^
-		(string_of_int a)^" [binary "^(string_of_int b)^" cl"^
-		(string_of_int c)^" "^(string_of_int d)^"])\n"
-|by_isar_line ((MRR ((a,b), (c,d)))) = 
-    "by(rule cl"^
-		(string_of_int a)^" [binary "^(string_of_int b)^" cl"^
-		(string_of_int c)^" "^(string_of_int d)^"])\n"
-|   by_isar_line ( (Para ((a,b), (c,d)))) =
-    "by (rule cl"^
-		(string_of_int a)^" [paramod "^(string_of_int b)^" cl"^
-		(string_of_int c)^" "^(string_of_int d)^"])\n"
-|   by_isar_line ((Factor ((a,b,c)))) = 
-    "by (rule cl"^(string_of_int a)^" [factor "^(string_of_int b)^" "^
-		(string_of_int c)^" ])\n"
-(*|   by_isar_line ( (Rewrite ((a,b),(c,d)))) =
-    "by (rule cl"^(string_of_int a)^" [demod "^(string_of_int b)^" "^
-		(string_of_int c)^" "^(string_of_int d)^" ])\n"*)
-|   by_isar_line ( (Obvious ((a,b)))) =
-    "by (rule cl"^(string_of_int a)^" [obvious "^(string_of_int b)^" ])\n"
-
-fun isar_line (numb, (step, clstrs, thmstrs))  = (have_isar_line (numb,(step,clstrs, thmstrs )))^( by_isar_line step)
-
-
-fun isar_lines [] str = str
-|   isar_lines (x::xs) str = isar_lines xs (str^(isar_line x))
-
-fun last_isar_line (numb,( step, clstrs,thmstrs)) = "show \"False\"\n"^(by_isar_line step)
-
-
-fun to_isar_proof (frees, xs) =
-    let val extraaxioms = get_extraaxioms xs
-	val extraax_num = length extraaxioms
-	val origaxioms_and_steps = Library.drop (extraax_num, xs)  
-	
-	val origaxioms = get_origaxioms origaxioms_and_steps
-	val origax_num = length origaxioms
-	val axioms_and_steps = Library.drop (origax_num + extraax_num, xs)  
-	val axioms = get_axioms axioms_and_steps
-	
-	val steps = Library.drop (origax_num, axioms_and_steps)
-	val (firststeps, laststep) = split_last steps
-	
-	val isar_proof = 
-		("show \"[your goal]\"\n")^
-		("proof (rule ccontr,skolemize, make_clauses) \n")^
-		("fix "^(frees_to_isar_str frees)^"\n")^
-		(assume_isar_extraaxioms extraaxioms)^
-		(assume_isar_origaxioms origaxioms)^
-		(isar_axiomlines axioms "")^
-		(isar_lines firststeps "")^
-		(last_isar_line laststep)^
-		("qed")
-	val _ = trace ("\nto_isar_proof returns " ^ isar_proof)
-    in
-	isar_proof
-    end;
-
-(* get fix vars from axioms - all Frees *)
-(* check each clause for meta-vars and /\ over them at each step*)
-
-(*******************************************************)
-(* This assumes the thm list  "numcls" is still there  *)
-(* In reality, should probably label it with an        *)
-(* ID number identifying the subgoal.  This could      *)
-(* be passed over to the watcher, e.g.  numcls25       *)
-(*******************************************************)
-
-fun apply_res_thm str  = 
-  let val tokens = #1 (lex str);
-      val _ = trace ("\napply_res_thm. str is: "^str^"\n")	
-      val (frees,recon_steps) = parse_step tokens 
-  in 
-      to_isar_proof (frees, recon_steps)
-  end 
-
-end;