--- a/src/HOL/Real/Hyperreal/HyperDef.ML Sat Dec 30 22:03:46 2000 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1365 +0,0 @@
-(* Title : HOL/Real/Hyperreal/Hyper.ML
- ID : $Id$
- Author : Jacques D. Fleuriot
- Copyright : 1998 University of Cambridge
- Description : Ultrapower construction of hyperreals
-*)
-
-(*------------------------------------------------------------------------
- Proof that the set of naturals is not finite
- ------------------------------------------------------------------------*)
-
-(*** based on James' proof that the set of naturals is not finite ***)
-Goal "finite (A::nat set) --> (EX n. ALL m. Suc (n + m) ~: A)";
-by (rtac impI 1);
-by (eres_inst_tac [("F","A")] finite_induct 1);
-by (Blast_tac 1 THEN etac exE 1);
-by (res_inst_tac [("x","n + x")] exI 1);
-by (rtac allI 1 THEN eres_inst_tac [("x","x + m")] allE 1);
-by (auto_tac (claset(), simpset() addsimps add_ac));
-by (auto_tac (claset(),
- simpset() addsimps [add_assoc RS sym,
- less_add_Suc2 RS less_not_refl2]));
-qed_spec_mp "finite_exhausts";
-
-Goal "finite (A :: nat set) --> (EX n. n ~:A)";
-by (rtac impI 1 THEN dtac finite_exhausts 1);
-by (Blast_tac 1);
-qed_spec_mp "finite_not_covers";
-
-Goal "~ finite(UNIV:: nat set)";
-by (fast_tac (claset() addSDs [finite_exhausts]) 1);
-qed "not_finite_nat";
-
-(*------------------------------------------------------------------------
- Existence of free ultrafilter over the naturals and proof of various
- properties of the FreeUltrafilterNat- an arbitrary free ultrafilter
- ------------------------------------------------------------------------*)
-
-Goal "EX U. U: FreeUltrafilter (UNIV::nat set)";
-by (rtac (not_finite_nat RS FreeUltrafilter_Ex) 1);
-qed "FreeUltrafilterNat_Ex";
-
-Goalw [FreeUltrafilterNat_def]
- "FreeUltrafilterNat: FreeUltrafilter(UNIV:: nat set)";
-by (rtac (FreeUltrafilterNat_Ex RS exE) 1);
-by (rtac someI2 1 THEN ALLGOALS(assume_tac));
-qed "FreeUltrafilterNat_mem";
-Addsimps [FreeUltrafilterNat_mem];
-
-Goalw [FreeUltrafilterNat_def] "finite x ==> x ~: FreeUltrafilterNat";
-by (rtac (FreeUltrafilterNat_Ex RS exE) 1);
-by (rtac someI2 1 THEN assume_tac 1);
-by (blast_tac (claset() addDs [mem_FreeUltrafiltersetD1]) 1);
-qed "FreeUltrafilterNat_finite";
-
-Goal "x: FreeUltrafilterNat ==> ~ finite x";
-by (blast_tac (claset() addDs [FreeUltrafilterNat_finite]) 1);
-qed "FreeUltrafilterNat_not_finite";
-
-Goalw [FreeUltrafilterNat_def] "{} ~: FreeUltrafilterNat";
-by (rtac (FreeUltrafilterNat_Ex RS exE) 1);
-by (rtac someI2 1 THEN assume_tac 1);
-by (blast_tac (claset() addDs [FreeUltrafilter_Ultrafilter,
- Ultrafilter_Filter,Filter_empty_not_mem]) 1);
-qed "FreeUltrafilterNat_empty";
-Addsimps [FreeUltrafilterNat_empty];
-
-Goal "[| X: FreeUltrafilterNat; Y: FreeUltrafilterNat |] \
-\ ==> X Int Y : FreeUltrafilterNat";
-by (cut_facts_tac [FreeUltrafilterNat_mem] 1);
-by (blast_tac (claset() addDs [FreeUltrafilter_Ultrafilter,
- Ultrafilter_Filter,mem_FiltersetD1]) 1);
-qed "FreeUltrafilterNat_Int";
-
-Goal "[| X: FreeUltrafilterNat; X <= Y |] \
-\ ==> Y : FreeUltrafilterNat";
-by (cut_facts_tac [FreeUltrafilterNat_mem] 1);
-by (blast_tac (claset() addDs [FreeUltrafilter_Ultrafilter,
- Ultrafilter_Filter,mem_FiltersetD2]) 1);
-qed "FreeUltrafilterNat_subset";
-
-Goal "X: FreeUltrafilterNat ==> -X ~: FreeUltrafilterNat";
-by (Step_tac 1);
-by (dtac FreeUltrafilterNat_Int 1 THEN assume_tac 1);
-by Auto_tac;
-qed "FreeUltrafilterNat_Compl";
-
-Goal "X~: FreeUltrafilterNat ==> -X : FreeUltrafilterNat";
-by (cut_facts_tac [FreeUltrafilterNat_mem RS (FreeUltrafilter_iff RS iffD1)] 1);
-by (Step_tac 1 THEN dres_inst_tac [("x","X")] bspec 1);
-by (auto_tac (claset(), simpset() addsimps [UNIV_diff_Compl]));
-qed "FreeUltrafilterNat_Compl_mem";
-
-Goal "(X ~: FreeUltrafilterNat) = (-X: FreeUltrafilterNat)";
-by (blast_tac (claset() addDs [FreeUltrafilterNat_Compl,
- FreeUltrafilterNat_Compl_mem]) 1);
-qed "FreeUltrafilterNat_Compl_iff1";
-
-Goal "(X: FreeUltrafilterNat) = (-X ~: FreeUltrafilterNat)";
-by (auto_tac (claset(),
- simpset() addsimps [FreeUltrafilterNat_Compl_iff1 RS sym]));
-qed "FreeUltrafilterNat_Compl_iff2";
-
-Goal "(UNIV::nat set) : FreeUltrafilterNat";
-by (rtac (FreeUltrafilterNat_mem RS FreeUltrafilter_Ultrafilter RS
- Ultrafilter_Filter RS mem_FiltersetD4) 1);
-qed "FreeUltrafilterNat_UNIV";
-Addsimps [FreeUltrafilterNat_UNIV];
-
-Goal "UNIV : FreeUltrafilterNat";
-by Auto_tac;
-qed "FreeUltrafilterNat_Nat_set";
-Addsimps [FreeUltrafilterNat_Nat_set];
-
-Goal "{n. P(n) = P(n)} : FreeUltrafilterNat";
-by (Simp_tac 1);
-qed "FreeUltrafilterNat_Nat_set_refl";
-AddIs [FreeUltrafilterNat_Nat_set_refl];
-
-Goal "{n::nat. P} : FreeUltrafilterNat ==> P";
-by (rtac ccontr 1);
-by (rotate_tac 1 1);
-by (Asm_full_simp_tac 1);
-qed "FreeUltrafilterNat_P";
-
-Goal "{n. P(n)} : FreeUltrafilterNat ==> EX n. P(n)";
-by (rtac ccontr 1 THEN rotate_tac 1 1);
-by (Asm_full_simp_tac 1);
-qed "FreeUltrafilterNat_Ex_P";
-
-Goal "ALL n. P(n) ==> {n. P(n)} : FreeUltrafilterNat";
-by (auto_tac (claset() addIs [FreeUltrafilterNat_Nat_set], simpset()));
-qed "FreeUltrafilterNat_all";
-
-(*-------------------------------------------------------
- Define and use Ultrafilter tactics
- -------------------------------------------------------*)
-use "fuf.ML";
-
-(*-------------------------------------------------------
- Now prove one further property of our free ultrafilter
- -------------------------------------------------------*)
-Goal "X Un Y: FreeUltrafilterNat \
-\ ==> X: FreeUltrafilterNat | Y: FreeUltrafilterNat";
-by Auto_tac;
-by (Ultra_tac 1);
-qed "FreeUltrafilterNat_Un";
-
-(*-------------------------------------------------------
- Properties of hyprel
- -------------------------------------------------------*)
-
-(** Proving that hyprel is an equivalence relation **)
-(** Natural deduction for hyprel **)
-
-Goalw [hyprel_def]
- "((X,Y): hyprel) = ({n. X n = Y n}: FreeUltrafilterNat)";
-by (Fast_tac 1);
-qed "hyprel_iff";
-
-Goalw [hyprel_def]
- "{n. X n = Y n}: FreeUltrafilterNat ==> (X,Y): hyprel";
-by (Fast_tac 1);
-qed "hyprelI";
-
-Goalw [hyprel_def]
- "p: hyprel --> (EX X Y. \
-\ p = (X,Y) & {n. X n = Y n} : FreeUltrafilterNat)";
-by (Fast_tac 1);
-qed "hyprelE_lemma";
-
-val [major,minor] = goal (the_context ())
- "[| p: hyprel; \
-\ !!X Y. [| p = (X,Y); {n. X n = Y n}: FreeUltrafilterNat\
-\ |] ==> Q |] ==> Q";
-by (cut_facts_tac [major RS (hyprelE_lemma RS mp)] 1);
-by (REPEAT (eresolve_tac [asm_rl,exE,conjE,minor] 1));
-qed "hyprelE";
-
-AddSIs [hyprelI];
-AddSEs [hyprelE];
-
-Goalw [hyprel_def] "(x,x): hyprel";
-by (auto_tac (claset(),
- simpset() addsimps [FreeUltrafilterNat_Nat_set]));
-qed "hyprel_refl";
-
-Goal "{n. X n = Y n} = {n. Y n = X n}";
-by Auto_tac;
-qed "lemma_perm";
-
-Goalw [hyprel_def] "(x,y): hyprel --> (y,x):hyprel";
-by (auto_tac (claset() addIs [lemma_perm RS subst], simpset()));
-qed_spec_mp "hyprel_sym";
-
-Goalw [hyprel_def]
- "(x,y): hyprel --> (y,z):hyprel --> (x,z):hyprel";
-by Auto_tac;
-by (Ultra_tac 1);
-qed_spec_mp "hyprel_trans";
-
-Goalw [equiv_def, refl_def, sym_def, trans_def] "equiv UNIV hyprel";
-by (auto_tac (claset() addSIs [hyprel_refl]
- addSEs [hyprel_sym,hyprel_trans]
- delrules [hyprelI,hyprelE],
- simpset() addsimps [FreeUltrafilterNat_Nat_set]));
-qed "equiv_hyprel";
-
-(* (hyprel ^^ {x} = hyprel ^^ {y}) = ((x,y) : hyprel) *)
-bind_thm ("equiv_hyprel_iff",
- [equiv_hyprel, UNIV_I, UNIV_I] MRS eq_equiv_class_iff);
-
-Goalw [hypreal_def,hyprel_def,quotient_def] "hyprel^^{x}:hypreal";
-by (Blast_tac 1);
-qed "hyprel_in_hypreal";
-
-Goal "inj_on Abs_hypreal hypreal";
-by (rtac inj_on_inverseI 1);
-by (etac Abs_hypreal_inverse 1);
-qed "inj_on_Abs_hypreal";
-
-Addsimps [equiv_hyprel_iff,inj_on_Abs_hypreal RS inj_on_iff,
- hyprel_iff, hyprel_in_hypreal, Abs_hypreal_inverse];
-
-Addsimps [equiv_hyprel RS eq_equiv_class_iff];
-bind_thm ("eq_hyprelD", equiv_hyprel RSN (2,eq_equiv_class));
-
-Goal "inj(Rep_hypreal)";
-by (rtac inj_inverseI 1);
-by (rtac Rep_hypreal_inverse 1);
-qed "inj_Rep_hypreal";
-
-Goalw [hyprel_def] "x: hyprel ^^ {x}";
-by (Step_tac 1);
-by (auto_tac (claset() addSIs [FreeUltrafilterNat_Nat_set], simpset()));
-qed "lemma_hyprel_refl";
-
-Addsimps [lemma_hyprel_refl];
-
-Goalw [hypreal_def] "{} ~: hypreal";
-by (auto_tac (claset() addSEs [quotientE], simpset()));
-qed "hypreal_empty_not_mem";
-
-Addsimps [hypreal_empty_not_mem];
-
-Goal "Rep_hypreal x ~= {}";
-by (cut_inst_tac [("x","x")] Rep_hypreal 1);
-by Auto_tac;
-qed "Rep_hypreal_nonempty";
-
-Addsimps [Rep_hypreal_nonempty];
-
-(*------------------------------------------------------------------------
- hypreal_of_real: the injection from real to hypreal
- ------------------------------------------------------------------------*)
-
-Goal "inj(hypreal_of_real)";
-by (rtac injI 1);
-by (rewtac hypreal_of_real_def);
-by (dtac (inj_on_Abs_hypreal RS inj_onD) 1);
-by (REPEAT (rtac hyprel_in_hypreal 1));
-by (dtac eq_equiv_class 1);
-by (rtac equiv_hyprel 1);
-by (Fast_tac 1);
-by (rtac ccontr 1 THEN rotate_tac 1 1);
-by Auto_tac;
-qed "inj_hypreal_of_real";
-
-val [prem] = goal (the_context ())
- "(!!x y. z = Abs_hypreal(hyprel^^{x}) ==> P) ==> P";
-by (res_inst_tac [("x1","z")]
- (rewrite_rule [hypreal_def] Rep_hypreal RS quotientE) 1);
-by (dres_inst_tac [("f","Abs_hypreal")] arg_cong 1);
-by (res_inst_tac [("x","x")] prem 1);
-by (asm_full_simp_tac (simpset() addsimps [Rep_hypreal_inverse]) 1);
-qed "eq_Abs_hypreal";
-
-(**** hypreal_minus: additive inverse on hypreal ****)
-
-Goalw [congruent_def]
- "congruent hyprel (%X. hyprel^^{%n. - (X n)})";
-by Safe_tac;
-by (ALLGOALS Ultra_tac);
-qed "hypreal_minus_congruent";
-
-Goalw [hypreal_minus_def]
- "- (Abs_hypreal(hyprel^^{%n. X n})) = Abs_hypreal(hyprel ^^ {%n. -(X n)})";
-by (res_inst_tac [("f","Abs_hypreal")] arg_cong 1);
-by (simp_tac (simpset() addsimps
- [hyprel_in_hypreal RS Abs_hypreal_inverse,
- [equiv_hyprel, hypreal_minus_congruent] MRS UN_equiv_class]) 1);
-qed "hypreal_minus";
-
-Goal "- (- z) = (z::hypreal)";
-by (res_inst_tac [("z","z")] eq_Abs_hypreal 1);
-by (asm_simp_tac (simpset() addsimps [hypreal_minus]) 1);
-qed "hypreal_minus_minus";
-
-Addsimps [hypreal_minus_minus];
-
-Goal "inj(%r::hypreal. -r)";
-by (rtac injI 1);
-by (dres_inst_tac [("f","uminus")] arg_cong 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_minus_minus]) 1);
-qed "inj_hypreal_minus";
-
-Goalw [hypreal_zero_def] "-0 = (0::hypreal)";
-by (simp_tac (simpset() addsimps [hypreal_minus]) 1);
-qed "hypreal_minus_zero";
-Addsimps [hypreal_minus_zero];
-
-Goal "(-x = 0) = (x = (0::hypreal))";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),
- simpset() addsimps [hypreal_zero_def, hypreal_minus, eq_commute] @
- real_add_ac));
-qed "hypreal_minus_zero_iff";
-
-Addsimps [hypreal_minus_zero_iff];
-
-
-(**** hyperreal addition: hypreal_add ****)
-
-Goalw [congruent2_def]
- "congruent2 hyprel (%X Y. hyprel^^{%n. X n + Y n})";
-by Safe_tac;
-by (ALLGOALS(Ultra_tac));
-qed "hypreal_add_congruent2";
-
-Goalw [hypreal_add_def]
- "Abs_hypreal(hyprel^^{%n. X n}) + Abs_hypreal(hyprel^^{%n. Y n}) = \
-\ Abs_hypreal(hyprel^^{%n. X n + Y n})";
-by (simp_tac (simpset() addsimps
- [[equiv_hyprel, hypreal_add_congruent2] MRS UN_equiv_class2]) 1);
-qed "hypreal_add";
-
-Goal "(z::hypreal) + w = w + z";
-by (res_inst_tac [("z","z")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","w")] eq_Abs_hypreal 1);
-by (asm_simp_tac (simpset() addsimps (real_add_ac @ [hypreal_add])) 1);
-qed "hypreal_add_commute";
-
-Goal "((z1::hypreal) + z2) + z3 = z1 + (z2 + z3)";
-by (res_inst_tac [("z","z1")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","z2")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","z3")] eq_Abs_hypreal 1);
-by (asm_simp_tac (simpset() addsimps [hypreal_add, real_add_assoc]) 1);
-qed "hypreal_add_assoc";
-
-(*For AC rewriting*)
-Goal "(x::hypreal)+(y+z)=y+(x+z)";
-by (rtac (hypreal_add_commute RS trans) 1);
-by (rtac (hypreal_add_assoc RS trans) 1);
-by (rtac (hypreal_add_commute RS arg_cong) 1);
-qed "hypreal_add_left_commute";
-
-(* hypreal addition is an AC operator *)
-bind_thms ("hypreal_add_ac", [hypreal_add_assoc,hypreal_add_commute,
- hypreal_add_left_commute]);
-
-Goalw [hypreal_zero_def] "(0::hypreal) + z = z";
-by (res_inst_tac [("z","z")] eq_Abs_hypreal 1);
-by (asm_full_simp_tac (simpset() addsimps
- [hypreal_add]) 1);
-qed "hypreal_add_zero_left";
-
-Goal "z + (0::hypreal) = z";
-by (simp_tac (simpset() addsimps
- [hypreal_add_zero_left,hypreal_add_commute]) 1);
-qed "hypreal_add_zero_right";
-
-Goalw [hypreal_zero_def] "z + -z = (0::hypreal)";
-by (res_inst_tac [("z","z")] eq_Abs_hypreal 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_minus, hypreal_add]) 1);
-qed "hypreal_add_minus";
-
-Goal "-z + z = (0::hypreal)";
-by (simp_tac (simpset() addsimps [hypreal_add_commute, hypreal_add_minus]) 1);
-qed "hypreal_add_minus_left";
-
-Addsimps [hypreal_add_minus,hypreal_add_minus_left,
- hypreal_add_zero_left,hypreal_add_zero_right];
-
-Goal "EX y. (x::hypreal) + y = 0";
-by (fast_tac (claset() addIs [hypreal_add_minus]) 1);
-qed "hypreal_minus_ex";
-
-Goal "EX! y. (x::hypreal) + y = 0";
-by (auto_tac (claset() addIs [hypreal_add_minus], simpset()));
-by (dres_inst_tac [("f","%x. ya+x")] arg_cong 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_add_commute]) 1);
-qed "hypreal_minus_ex1";
-
-Goal "EX! y. y + (x::hypreal) = 0";
-by (auto_tac (claset() addIs [hypreal_add_minus_left], simpset()));
-by (dres_inst_tac [("f","%x. x+ya")] arg_cong 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_add_assoc]) 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_add_commute]) 1);
-qed "hypreal_minus_left_ex1";
-
-Goal "x + y = (0::hypreal) ==> x = -y";
-by (cut_inst_tac [("z","y")] hypreal_add_minus_left 1);
-by (res_inst_tac [("x1","y")] (hypreal_minus_left_ex1 RS ex1E) 1);
-by (Blast_tac 1);
-qed "hypreal_add_minus_eq_minus";
-
-Goal "EX y::hypreal. x = -y";
-by (cut_inst_tac [("x","x")] hypreal_minus_ex 1);
-by (etac exE 1 THEN dtac hypreal_add_minus_eq_minus 1);
-by (Fast_tac 1);
-qed "hypreal_as_add_inverse_ex";
-
-Goal "-(x + (y::hypreal)) = -x + -y";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),
- simpset() addsimps [hypreal_minus, hypreal_add,
- real_minus_add_distrib]));
-qed "hypreal_minus_add_distrib";
-Addsimps [hypreal_minus_add_distrib];
-
-Goal "-(y + -(x::hypreal)) = x + -y";
-by (simp_tac (simpset() addsimps [hypreal_add_commute]) 1);
-qed "hypreal_minus_distrib1";
-
-Goal "(x + - (y::hypreal)) + (y + - z) = x + -z";
-by (res_inst_tac [("w1","y")] (hypreal_add_commute RS subst) 1);
-by (simp_tac (simpset() addsimps [hypreal_add_left_commute,
- hypreal_add_assoc]) 1);
-by (simp_tac (simpset() addsimps [hypreal_add_commute]) 1);
-qed "hypreal_add_minus_cancel1";
-
-Goal "((x::hypreal) + y = x + z) = (y = z)";
-by (Step_tac 1);
-by (dres_inst_tac [("f","%t.-x + t")] arg_cong 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1);
-qed "hypreal_add_left_cancel";
-
-Goal "z + (x + (y + -z)) = x + (y::hypreal)";
-by (simp_tac (simpset() addsimps hypreal_add_ac) 1);
-qed "hypreal_add_minus_cancel2";
-Addsimps [hypreal_add_minus_cancel2];
-
-Goal "y + -(x + y) = -(x::hypreal)";
-by (Full_simp_tac 1);
-by (rtac (hypreal_add_left_commute RS subst) 1);
-by (Full_simp_tac 1);
-qed "hypreal_add_minus_cancel";
-Addsimps [hypreal_add_minus_cancel];
-
-Goal "y + -(y + x) = -(x::hypreal)";
-by (simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1);
-qed "hypreal_add_minus_cancelc";
-Addsimps [hypreal_add_minus_cancelc];
-
-Goal "(z + -x) + (y + -z) = (y + -(x::hypreal))";
-by (full_simp_tac
- (simpset() addsimps [hypreal_minus_add_distrib RS sym,
- hypreal_add_left_cancel] @ hypreal_add_ac
- delsimps [hypreal_minus_add_distrib]) 1);
-qed "hypreal_add_minus_cancel3";
-Addsimps [hypreal_add_minus_cancel3];
-
-Goal "(y + (x::hypreal)= z + x) = (y = z)";
-by (simp_tac (simpset() addsimps [hypreal_add_commute,
- hypreal_add_left_cancel]) 1);
-qed "hypreal_add_right_cancel";
-
-Goal "z + (y + -z) = (y::hypreal)";
-by (simp_tac (simpset() addsimps hypreal_add_ac) 1);
-qed "hypreal_add_minus_cancel4";
-Addsimps [hypreal_add_minus_cancel4];
-
-Goal "z + (w + (x + (-z + y))) = w + x + (y::hypreal)";
-by (simp_tac (simpset() addsimps hypreal_add_ac) 1);
-qed "hypreal_add_minus_cancel5";
-Addsimps [hypreal_add_minus_cancel5];
-
-Goal "z + ((- z) + w) = (w::hypreal)";
-by (simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1);
-qed "hypreal_add_minus_cancelA";
-
-Goal "(-z) + (z + w) = (w::hypreal)";
-by (simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1);
-qed "hypreal_minus_add_cancelA";
-
-Addsimps [hypreal_add_minus_cancelA, hypreal_minus_add_cancelA];
-
-(**** hyperreal multiplication: hypreal_mult ****)
-
-Goalw [congruent2_def]
- "congruent2 hyprel (%X Y. hyprel^^{%n. X n * Y n})";
-by Safe_tac;
-by (ALLGOALS(Ultra_tac));
-qed "hypreal_mult_congruent2";
-
-Goalw [hypreal_mult_def]
- "Abs_hypreal(hyprel^^{%n. X n}) * Abs_hypreal(hyprel^^{%n. Y n}) = \
-\ Abs_hypreal(hyprel^^{%n. X n * Y n})";
-by (simp_tac (simpset() addsimps
- [[equiv_hyprel, hypreal_mult_congruent2] MRS UN_equiv_class2]) 1);
-qed "hypreal_mult";
-
-Goal "(z::hypreal) * w = w * z";
-by (res_inst_tac [("z","z")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","w")] eq_Abs_hypreal 1);
-by (asm_simp_tac (simpset() addsimps ([hypreal_mult] @ real_mult_ac)) 1);
-qed "hypreal_mult_commute";
-
-Goal "((z1::hypreal) * z2) * z3 = z1 * (z2 * z3)";
-by (res_inst_tac [("z","z1")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","z2")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","z3")] eq_Abs_hypreal 1);
-by (asm_simp_tac (simpset() addsimps [hypreal_mult,real_mult_assoc]) 1);
-qed "hypreal_mult_assoc";
-
-qed_goal "hypreal_mult_left_commute" (the_context ())
- "(z1::hypreal) * (z2 * z3) = z2 * (z1 * z3)"
- (fn _ => [rtac (hypreal_mult_commute RS trans) 1,
- rtac (hypreal_mult_assoc RS trans) 1,
- rtac (hypreal_mult_commute RS arg_cong) 1]);
-
-(* hypreal multiplication is an AC operator *)
-bind_thms ("hypreal_mult_ac", [hypreal_mult_assoc, hypreal_mult_commute,
- hypreal_mult_left_commute]);
-
-Goalw [hypreal_one_def] "1hr * z = z";
-by (res_inst_tac [("z","z")] eq_Abs_hypreal 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_mult]) 1);
-qed "hypreal_mult_1";
-
-Goal "z * 1hr = z";
-by (simp_tac (simpset() addsimps [hypreal_mult_commute,
- hypreal_mult_1]) 1);
-qed "hypreal_mult_1_right";
-
-Goalw [hypreal_zero_def] "0 * z = (0::hypreal)";
-by (res_inst_tac [("z","z")] eq_Abs_hypreal 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_mult,real_mult_0]) 1);
-qed "hypreal_mult_0";
-
-Goal "z * 0 = (0::hypreal)";
-by (simp_tac (simpset() addsimps [hypreal_mult_commute, hypreal_mult_0]) 1);
-qed "hypreal_mult_0_right";
-
-Addsimps [hypreal_mult_0,hypreal_mult_0_right];
-
-Goal "-(x * y) = -x * (y::hypreal)";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),
- simpset() addsimps [hypreal_minus, hypreal_mult]
- @ real_mult_ac @ real_add_ac));
-qed "hypreal_minus_mult_eq1";
-
-Goal "-(x * y) = (x::hypreal) * -y";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
-by (auto_tac (claset(), simpset() addsimps [hypreal_minus, hypreal_mult]
- @ real_mult_ac @ real_add_ac));
-qed "hypreal_minus_mult_eq2";
-
-(*Pull negations out*)
-Addsimps [hypreal_minus_mult_eq2 RS sym, hypreal_minus_mult_eq1 RS sym];
-
-Goal "-x*y = (x::hypreal)*-y";
-by Auto_tac;
-qed "hypreal_minus_mult_commute";
-
-(*-----------------------------------------------------------------------------
- A few more theorems
- ----------------------------------------------------------------------------*)
-Goal "(z::hypreal) + v = z' + v' ==> z + (v + w) = z' + (v' + w)";
-by (asm_simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1);
-qed "hypreal_add_assoc_cong";
-
-Goal "(z::hypreal) + (v + w) = v + (z + w)";
-by (REPEAT (ares_tac [hypreal_add_commute RS hypreal_add_assoc_cong] 1));
-qed "hypreal_add_assoc_swap";
-
-Goal "((z1::hypreal) + z2) * w = (z1 * w) + (z2 * w)";
-by (res_inst_tac [("z","z1")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","z2")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","w")] eq_Abs_hypreal 1);
-by (asm_simp_tac (simpset() addsimps [hypreal_mult,hypreal_add,
- real_add_mult_distrib]) 1);
-qed "hypreal_add_mult_distrib";
-
-val hypreal_mult_commute'= read_instantiate [("z","w")] hypreal_mult_commute;
-
-Goal "(w::hypreal) * (z1 + z2) = (w * z1) + (w * z2)";
-by (simp_tac (simpset() addsimps [hypreal_mult_commute',hypreal_add_mult_distrib]) 1);
-qed "hypreal_add_mult_distrib2";
-
-bind_thms ("hypreal_mult_simps", [hypreal_mult_1, hypreal_mult_1_right]);
-Addsimps hypreal_mult_simps;
-
-(* 07/00 *)
-
-Goalw [hypreal_diff_def] "((z1::hypreal) - z2) * w = (z1 * w) - (z2 * w)";
-by (simp_tac (simpset() addsimps [hypreal_add_mult_distrib]) 1);
-qed "hypreal_diff_mult_distrib";
-
-Goal "(w::hypreal) * (z1 - z2) = (w * z1) - (w * z2)";
-by (simp_tac (simpset() addsimps [hypreal_mult_commute',
- hypreal_diff_mult_distrib]) 1);
-qed "hypreal_diff_mult_distrib2";
-
-(*** one and zero are distinct ***)
-Goalw [hypreal_zero_def,hypreal_one_def] "0 ~= 1hr";
-by (auto_tac (claset(), simpset() addsimps [real_zero_not_eq_one]));
-qed "hypreal_zero_not_eq_one";
-
-
-(**** multiplicative inverse on hypreal ****)
-
-Goalw [congruent_def]
- "congruent hyprel (%X. hyprel^^{%n. if X n = #0 then #0 else inverse(X n)})";
-by (Auto_tac THEN Ultra_tac 1);
-qed "hypreal_inverse_congruent";
-
-Goalw [hypreal_inverse_def]
- "inverse (Abs_hypreal(hyprel^^{%n. X n})) = \
-\ Abs_hypreal(hyprel ^^ {%n. if X n = #0 then #0 else inverse(X n)})";
-by (res_inst_tac [("f","Abs_hypreal")] arg_cong 1);
-by (simp_tac (simpset() addsimps
- [hyprel_in_hypreal RS Abs_hypreal_inverse,
- [equiv_hyprel, hypreal_inverse_congruent] MRS UN_equiv_class]) 1);
-qed "hypreal_inverse";
-
-Goal "inverse 0 = (0::hypreal)";
-by (simp_tac (simpset() addsimps [hypreal_inverse, hypreal_zero_def]) 1);
-qed "HYPREAL_INVERSE_ZERO";
-
-Goal "a / (0::hypreal) = 0";
-by (simp_tac
- (simpset() addsimps [hypreal_divide_def, HYPREAL_INVERSE_ZERO]) 1);
-qed "HYPREAL_DIVISION_BY_ZERO"; (*NOT for adding to default simpset*)
-
-fun hypreal_div_undefined_case_tac s i =
- case_tac s i THEN
- asm_simp_tac
- (simpset() addsimps [HYPREAL_DIVISION_BY_ZERO, HYPREAL_INVERSE_ZERO]) i;
-
-Goal "inverse (inverse (z::hypreal)) = z";
-by (hypreal_div_undefined_case_tac "z=0" 1);
-by (res_inst_tac [("z","z")] eq_Abs_hypreal 1);
-by (asm_full_simp_tac (simpset() addsimps
- [hypreal_inverse, hypreal_zero_def]) 1);
-qed "hypreal_inverse_inverse";
-Addsimps [hypreal_inverse_inverse];
-
-Goalw [hypreal_one_def] "inverse(1hr) = 1hr";
-by (full_simp_tac (simpset() addsimps [hypreal_inverse,
- real_zero_not_eq_one RS not_sym]) 1);
-qed "hypreal_inverse_1";
-Addsimps [hypreal_inverse_1];
-
-
-(*** existence of inverse ***)
-
-Goalw [hypreal_one_def,hypreal_zero_def]
- "x ~= 0 ==> x*inverse(x) = 1hr";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (rotate_tac 1 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_inverse, hypreal_mult]) 1);
-by (dtac FreeUltrafilterNat_Compl_mem 1);
-by (blast_tac (claset() addSIs [real_mult_inv_right,
- FreeUltrafilterNat_subset]) 1);
-qed "hypreal_mult_inverse";
-
-Goal "x ~= 0 ==> inverse(x)*x = 1hr";
-by (asm_simp_tac (simpset() addsimps [hypreal_mult_inverse,
- hypreal_mult_commute]) 1);
-qed "hypreal_mult_inverse_left";
-
-Goal "(c::hypreal) ~= 0 ==> (c*a=c*b) = (a=b)";
-by Auto_tac;
-by (dres_inst_tac [("f","%x. x*inverse c")] arg_cong 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_inverse] @ hypreal_mult_ac) 1);
-qed "hypreal_mult_left_cancel";
-
-Goal "(c::hypreal) ~= 0 ==> (a*c=b*c) = (a=b)";
-by (Step_tac 1);
-by (dres_inst_tac [("f","%x. x*inverse c")] arg_cong 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_inverse] @ hypreal_mult_ac) 1);
-qed "hypreal_mult_right_cancel";
-
-Goalw [hypreal_zero_def] "x ~= 0 ==> inverse (x::hypreal) ~= 0";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_inverse, hypreal_mult]) 1);
-qed "hypreal_inverse_not_zero";
-
-Addsimps [hypreal_mult_inverse,hypreal_mult_inverse_left];
-
-Goal "[| x ~= 0; y ~= 0 |] ==> x * y ~= (0::hypreal)";
-by (Step_tac 1);
-by (dres_inst_tac [("f","%z. inverse x*z")] arg_cong 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_assoc RS sym]) 1);
-qed "hypreal_mult_not_0";
-
-bind_thm ("hypreal_mult_not_0E",hypreal_mult_not_0 RS notE);
-
-Goal "x*y = (0::hypreal) ==> x = 0 | y = 0";
-by (auto_tac (claset() addIs [ccontr] addDs [hypreal_mult_not_0],
- simpset()));
-qed "hypreal_mult_zero_disj";
-
-Goal "inverse(-x) = -inverse(x::hypreal)";
-by (hypreal_div_undefined_case_tac "x=0" 1);
-by (rtac (hypreal_mult_right_cancel RS iffD1) 1);
-by (stac hypreal_mult_inverse_left 2);
-by Auto_tac;
-qed "hypreal_minus_inverse";
-
-Goal "inverse(x*y) = inverse(x)*inverse(y::hypreal)";
-by (hypreal_div_undefined_case_tac "x=0" 1);
-by (hypreal_div_undefined_case_tac "y=0" 1);
-by (forw_inst_tac [("y","y")] hypreal_mult_not_0 1 THEN assume_tac 1);
-by (res_inst_tac [("c1","x")] (hypreal_mult_left_cancel RS iffD1) 1);
-by (auto_tac (claset(), simpset() addsimps [hypreal_mult_assoc RS sym]));
-by (res_inst_tac [("c1","y")] (hypreal_mult_left_cancel RS iffD1) 1);
-by (auto_tac (claset(), simpset() addsimps [hypreal_mult_left_commute]));
-by (asm_simp_tac (simpset() addsimps [hypreal_mult_assoc RS sym]) 1);
-qed "hypreal_inverse_distrib";
-
-(*------------------------------------------------------------------
- Theorems for ordering
- ------------------------------------------------------------------*)
-
-(* prove introduction and elimination rules for hypreal_less *)
-
-Goalw [hypreal_less_def]
- "P < (Q::hypreal) = (EX X Y. X : Rep_hypreal(P) & \
-\ Y : Rep_hypreal(Q) & \
-\ {n. X n < Y n} : FreeUltrafilterNat)";
-by (Fast_tac 1);
-qed "hypreal_less_iff";
-
-Goalw [hypreal_less_def]
- "[| {n. X n < Y n} : FreeUltrafilterNat; \
-\ X : Rep_hypreal(P); \
-\ Y : Rep_hypreal(Q) |] ==> P < (Q::hypreal)";
-by (Fast_tac 1);
-qed "hypreal_lessI";
-
-
-Goalw [hypreal_less_def]
- "!! R1. [| R1 < (R2::hypreal); \
-\ !!X Y. {n. X n < Y n} : FreeUltrafilterNat ==> P; \
-\ !!X. X : Rep_hypreal(R1) ==> P; \
-\ !!Y. Y : Rep_hypreal(R2) ==> P |] \
-\ ==> P";
-by Auto_tac;
-qed "hypreal_lessE";
-
-Goalw [hypreal_less_def]
- "R1 < (R2::hypreal) ==> (EX X Y. {n. X n < Y n} : FreeUltrafilterNat & \
-\ X : Rep_hypreal(R1) & \
-\ Y : Rep_hypreal(R2))";
-by (Fast_tac 1);
-qed "hypreal_lessD";
-
-Goal "~ (R::hypreal) < R";
-by (res_inst_tac [("z","R")] eq_Abs_hypreal 1);
-by (auto_tac (claset(), simpset() addsimps [hypreal_less_def]));
-by (Ultra_tac 1);
-qed "hypreal_less_not_refl";
-
-(*** y < y ==> P ***)
-bind_thm("hypreal_less_irrefl",hypreal_less_not_refl RS notE);
-AddSEs [hypreal_less_irrefl];
-
-Goal "!!(x::hypreal). x < y ==> x ~= y";
-by (auto_tac (claset(), simpset() addsimps [hypreal_less_not_refl]));
-qed "hypreal_not_refl2";
-
-Goal "!!(R1::hypreal). [| R1 < R2; R2 < R3 |] ==> R1 < R3";
-by (res_inst_tac [("z","R1")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","R2")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","R3")] eq_Abs_hypreal 1);
-by (auto_tac (claset() addSIs [exI], simpset() addsimps [hypreal_less_def]));
-by (ultra_tac (claset() addIs [real_less_trans], simpset()) 1);
-qed "hypreal_less_trans";
-
-Goal "!! (R1::hypreal). [| R1 < R2; R2 < R1 |] ==> P";
-by (dtac hypreal_less_trans 1 THEN assume_tac 1);
-by (asm_full_simp_tac (simpset() addsimps
- [hypreal_less_not_refl]) 1);
-qed "hypreal_less_asym";
-
-(*-------------------------------------------------------
- TODO: The following theorem should have been proved
- first and then used througout the proofs as it probably
- makes many of them more straightforward.
- -------------------------------------------------------*)
-Goalw [hypreal_less_def]
- "(Abs_hypreal(hyprel^^{%n. X n}) < \
-\ Abs_hypreal(hyprel^^{%n. Y n})) = \
-\ ({n. X n < Y n} : FreeUltrafilterNat)";
-by (auto_tac (claset() addSIs [lemma_hyprel_refl], simpset()));
-by (Ultra_tac 1);
-qed "hypreal_less";
-
-(*---------------------------------------------------------------------------------
- Hyperreals as a linearly ordered field
- ---------------------------------------------------------------------------------*)
-(*** sum order
-Goalw [hypreal_zero_def]
- "[| 0 < x; 0 < y |] ==> (0::hypreal) < x + y";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),simpset() addsimps
- [hypreal_less_def,hypreal_add]));
-by (auto_tac (claset() addSIs [exI],simpset() addsimps
- [hypreal_less_def,hypreal_add]));
-by (ultra_tac (claset() addIs [real_add_order],simpset()) 1);
-qed "hypreal_add_order";
-***)
-
-(*** mult order
-Goalw [hypreal_zero_def]
- "[| 0 < x; 0 < y |] ==> (0::hypreal) < x * y";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
-by (auto_tac (claset() addSIs [exI],simpset() addsimps
- [hypreal_less_def,hypreal_mult]));
-by (ultra_tac (claset() addIs [rename_numerals real_mult_order],
- simpset()) 1);
-qed "hypreal_mult_order";
-****)
-
-
-(*---------------------------------------------------------------------------------
- Trichotomy of the hyperreals
- --------------------------------------------------------------------------------*)
-
-Goalw [hyprel_def] "EX x. x: hyprel ^^ {%n. #0}";
-by (res_inst_tac [("x","%n. #0")] exI 1);
-by (Step_tac 1);
-by (auto_tac (claset() addSIs [FreeUltrafilterNat_Nat_set], simpset()));
-qed "lemma_hyprel_0r_mem";
-
-Goalw [hypreal_zero_def]"0 < x | x = 0 | x < (0::hypreal)";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),simpset() addsimps [hypreal_less_def]));
-by (cut_facts_tac [lemma_hyprel_0r_mem] 1 THEN etac exE 1);
-by (dres_inst_tac [("x","xa")] spec 1);
-by (dres_inst_tac [("x","x")] spec 1);
-by (cut_inst_tac [("x","x")] lemma_hyprel_refl 1);
-by Auto_tac;
-by (dres_inst_tac [("x","x")] spec 1);
-by (dres_inst_tac [("x","xa")] spec 1);
-by Auto_tac;
-by (Ultra_tac 1);
-by (auto_tac (claset() addIs [real_linear_less2],simpset()));
-qed "hypreal_trichotomy";
-
-val prems = Goal "[| (0::hypreal) < x ==> P; \
-\ x = 0 ==> P; \
-\ x < 0 ==> P |] ==> P";
-by (cut_inst_tac [("x","x")] hypreal_trichotomy 1);
-by (REPEAT (eresolve_tac (disjE::prems) 1));
-qed "hypreal_trichotomyE";
-
-(*----------------------------------------------------------------------------
- More properties of <
- ----------------------------------------------------------------------------*)
-
-Goal "((x::hypreal) < y) = (0 < y + -x)";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),simpset() addsimps [hypreal_add,
- hypreal_zero_def,hypreal_minus,hypreal_less]));
-by (ALLGOALS(Ultra_tac));
-qed "hypreal_less_minus_iff";
-
-Goal "((x::hypreal) < y) = (x + -y < 0)";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),simpset() addsimps [hypreal_add,
- hypreal_zero_def,hypreal_minus,hypreal_less]));
-by (ALLGOALS(Ultra_tac));
-qed "hypreal_less_minus_iff2";
-
-Goal "((x::hypreal) = y) = (0 = x + - y)";
-by Auto_tac;
-by (res_inst_tac [("x1","-y")] (hypreal_add_right_cancel RS iffD1) 1);
-by Auto_tac;
-qed "hypreal_eq_minus_iff";
-
-Goal "((x::hypreal) = y) = (0 = y + - x)";
-by Auto_tac;
-by (res_inst_tac [("x1","-x")] (hypreal_add_right_cancel RS iffD1) 1);
-by Auto_tac;
-qed "hypreal_eq_minus_iff2";
-
-(* 07/00 *)
-Goal "(0::hypreal) - x = -x";
-by (simp_tac (simpset() addsimps [hypreal_diff_def]) 1);
-qed "hypreal_diff_zero";
-
-Goal "x - (0::hypreal) = x";
-by (simp_tac (simpset() addsimps [hypreal_diff_def]) 1);
-qed "hypreal_diff_zero_right";
-
-Goal "x - x = (0::hypreal)";
-by (simp_tac (simpset() addsimps [hypreal_diff_def]) 1);
-qed "hypreal_diff_self";
-
-Addsimps [hypreal_diff_zero, hypreal_diff_zero_right, hypreal_diff_self];
-
-Goal "(x = y + z) = (x + -z = (y::hypreal))";
-by (auto_tac (claset(),simpset() addsimps [hypreal_add_assoc]));
-qed "hypreal_eq_minus_iff3";
-
-Goal "(x ~= a) = (x + -a ~= (0::hypreal))";
-by (auto_tac (claset() addDs [sym RS (hypreal_eq_minus_iff RS iffD2)],
- simpset()));
-qed "hypreal_not_eq_minus_iff";
-
-(*** linearity ***)
-Goal "(x::hypreal) < y | x = y | y < x";
-by (stac hypreal_eq_minus_iff2 1);
-by (res_inst_tac [("x1","x")] (hypreal_less_minus_iff RS ssubst) 1);
-by (res_inst_tac [("x1","y")] (hypreal_less_minus_iff2 RS ssubst) 1);
-by (rtac hypreal_trichotomyE 1);
-by Auto_tac;
-qed "hypreal_linear";
-
-Goal "((w::hypreal) ~= z) = (w<z | z<w)";
-by (cut_facts_tac [hypreal_linear] 1);
-by (Blast_tac 1);
-qed "hypreal_neq_iff";
-
-Goal "!!(x::hypreal). [| x < y ==> P; x = y ==> P; \
-\ y < x ==> P |] ==> P";
-by (cut_inst_tac [("x","x"),("y","y")] hypreal_linear 1);
-by Auto_tac;
-qed "hypreal_linear_less2";
-
-(*------------------------------------------------------------------------------
- Properties of <=
- ------------------------------------------------------------------------------*)
-(*------ hypreal le iff reals le a.e ------*)
-
-Goalw [hypreal_le_def,real_le_def]
- "(Abs_hypreal(hyprel^^{%n. X n}) <= \
-\ Abs_hypreal(hyprel^^{%n. Y n})) = \
-\ ({n. X n <= Y n} : FreeUltrafilterNat)";
-by (auto_tac (claset(),simpset() addsimps [hypreal_less]));
-by (ALLGOALS(Ultra_tac));
-qed "hypreal_le";
-
-(*---------------------------------------------------------*)
-(*---------------------------------------------------------*)
-Goalw [hypreal_le_def]
- "~(w < z) ==> z <= (w::hypreal)";
-by (assume_tac 1);
-qed "hypreal_leI";
-
-Goalw [hypreal_le_def]
- "z<=w ==> ~(w<(z::hypreal))";
-by (assume_tac 1);
-qed "hypreal_leD";
-
-bind_thm ("hypreal_leE", make_elim hypreal_leD);
-
-Goal "(~(w < z)) = (z <= (w::hypreal))";
-by (fast_tac (claset() addSIs [hypreal_leI,hypreal_leD]) 1);
-qed "hypreal_less_le_iff";
-
-Goalw [hypreal_le_def] "~ z <= w ==> w<(z::hypreal)";
-by (Fast_tac 1);
-qed "not_hypreal_leE";
-
-Goalw [hypreal_le_def] "z < w ==> z <= (w::hypreal)";
-by (fast_tac (claset() addEs [hypreal_less_asym]) 1);
-qed "hypreal_less_imp_le";
-
-Goalw [hypreal_le_def] "!!(x::hypreal). x <= y ==> x < y | x = y";
-by (cut_facts_tac [hypreal_linear] 1);
-by (fast_tac (claset() addEs [hypreal_less_irrefl,hypreal_less_asym]) 1);
-qed "hypreal_le_imp_less_or_eq";
-
-Goalw [hypreal_le_def] "z<w | z=w ==> z <=(w::hypreal)";
-by (cut_facts_tac [hypreal_linear] 1);
-by (fast_tac (claset() addEs [hypreal_less_irrefl,hypreal_less_asym]) 1);
-qed "hypreal_less_or_eq_imp_le";
-
-Goal "(x <= (y::hypreal)) = (x < y | x=y)";
-by (REPEAT(ares_tac [iffI, hypreal_less_or_eq_imp_le, hypreal_le_imp_less_or_eq] 1));
-qed "hypreal_le_eq_less_or_eq";
-val hypreal_le_less = hypreal_le_eq_less_or_eq;
-
-Goal "w <= (w::hypreal)";
-by (simp_tac (simpset() addsimps [hypreal_le_eq_less_or_eq]) 1);
-qed "hypreal_le_refl";
-Addsimps [hypreal_le_refl];
-
-(* Axiom 'linorder_linear' of class 'linorder': *)
-Goal "(z::hypreal) <= w | w <= z";
-by (simp_tac (simpset() addsimps [hypreal_le_less]) 1);
-by (cut_facts_tac [hypreal_linear] 1);
-by (Blast_tac 1);
-qed "hypreal_le_linear";
-
-Goal "[| i <= j; j < k |] ==> i < (k::hypreal)";
-by (dtac hypreal_le_imp_less_or_eq 1);
-by (fast_tac (claset() addIs [hypreal_less_trans]) 1);
-qed "hypreal_le_less_trans";
-
-Goal "!! (i::hypreal). [| i < j; j <= k |] ==> i < k";
-by (dtac hypreal_le_imp_less_or_eq 1);
-by (fast_tac (claset() addIs [hypreal_less_trans]) 1);
-qed "hypreal_less_le_trans";
-
-Goal "[| i <= j; j <= k |] ==> i <= (k::hypreal)";
-by (EVERY1 [dtac hypreal_le_imp_less_or_eq, dtac hypreal_le_imp_less_or_eq,
- rtac hypreal_less_or_eq_imp_le, fast_tac (claset() addIs [hypreal_less_trans])]);
-qed "hypreal_le_trans";
-
-Goal "[| z <= w; w <= z |] ==> z = (w::hypreal)";
-by (EVERY1 [dtac hypreal_le_imp_less_or_eq, dtac hypreal_le_imp_less_or_eq,
- fast_tac (claset() addEs [hypreal_less_irrefl,hypreal_less_asym])]);
-qed "hypreal_le_anti_sym";
-
-Goal "[| ~ y < x; y ~= x |] ==> x < (y::hypreal)";
-by (rtac not_hypreal_leE 1);
-by (fast_tac (claset() addDs [hypreal_le_imp_less_or_eq]) 1);
-qed "not_less_not_eq_hypreal_less";
-
-(* Axiom 'order_less_le' of class 'order': *)
-Goal "(w::hypreal) < z = (w <= z & w ~= z)";
-by (simp_tac (simpset() addsimps [hypreal_le_def, hypreal_neq_iff]) 1);
-by (blast_tac (claset() addIs [hypreal_less_asym]) 1);
-qed "hypreal_less_le";
-
-Goal "(0 < -R) = (R < (0::hypreal))";
-by (res_inst_tac [("z","R")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),
- simpset() addsimps [hypreal_zero_def, hypreal_less,hypreal_minus]));
-qed "hypreal_minus_zero_less_iff";
-Addsimps [hypreal_minus_zero_less_iff];
-
-Goal "(-R < 0) = ((0::hypreal) < R)";
-by (res_inst_tac [("z","R")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),
- simpset() addsimps [hypreal_zero_def, hypreal_less,hypreal_minus]));
-by (ALLGOALS(Ultra_tac));
-qed "hypreal_minus_zero_less_iff2";
-
-Goalw [hypreal_le_def] "((0::hypreal) <= -r) = (r <= (0::hypreal))";
-by (simp_tac (simpset() addsimps [hypreal_minus_zero_less_iff2]) 1);
-qed "hypreal_minus_zero_le_iff";
-Addsimps [hypreal_minus_zero_le_iff];
-
-(*----------------------------------------------------------
- hypreal_of_real preserves field and order properties
- -----------------------------------------------------------*)
-Goalw [hypreal_of_real_def]
- "hypreal_of_real (z1 + z2) = hypreal_of_real z1 + hypreal_of_real z2";
-by (simp_tac (simpset() addsimps [hypreal_add, hypreal_add_mult_distrib]) 1);
-qed "hypreal_of_real_add";
-Addsimps [hypreal_of_real_add];
-
-Goalw [hypreal_of_real_def]
- "hypreal_of_real (z1 * z2) = hypreal_of_real z1 * hypreal_of_real z2";
-by (simp_tac (simpset() addsimps [hypreal_mult, hypreal_add_mult_distrib2]) 1);
-qed "hypreal_of_real_mult";
-Addsimps [hypreal_of_real_mult];
-
-Goalw [hypreal_less_def,hypreal_of_real_def]
- "(z1 < z2) = (hypreal_of_real z1 < hypreal_of_real z2)";
-by Auto_tac;
-by (res_inst_tac [("x","%n. z1")] exI 1);
-by (Step_tac 1);
-by (res_inst_tac [("x","%n. z2")] exI 2);
-by Auto_tac;
-by (rtac FreeUltrafilterNat_P 1);
-by (Ultra_tac 1);
-qed "hypreal_of_real_less_iff";
-
-Addsimps [hypreal_of_real_less_iff RS sym];
-
-Goalw [hypreal_le_def,real_le_def]
- "(z1 <= z2) = (hypreal_of_real z1 <= hypreal_of_real z2)";
-by Auto_tac;
-qed "hypreal_of_real_le_iff";
-
-Goalw [hypreal_of_real_def] "hypreal_of_real (-r) = - hypreal_of_real r";
-by (auto_tac (claset(),simpset() addsimps [hypreal_minus]));
-qed "hypreal_of_real_minus";
-Addsimps [hypreal_of_real_minus];
-
-(*DON'T insert this or the next one as default simprules.
- They are used in both orientations and anyway aren't the ones we finally
- need, which would use binary literals.*)
-Goalw [hypreal_of_real_def,hypreal_one_def] "hypreal_of_real #1 = 1hr";
-by (Step_tac 1);
-qed "hypreal_of_real_one";
-
-Goalw [hypreal_of_real_def,hypreal_zero_def] "hypreal_of_real #0 = 0";
-by (Step_tac 1);
-qed "hypreal_of_real_zero";
-
-Goal "(hypreal_of_real r = 0) = (r = #0)";
-by (auto_tac (claset() addIs [FreeUltrafilterNat_P],
- simpset() addsimps [hypreal_of_real_def,
- hypreal_zero_def,FreeUltrafilterNat_Nat_set]));
-qed "hypreal_of_real_zero_iff";
-AddIffs [hypreal_of_real_zero_iff];
-
-
-Goal "hypreal_of_real (inverse r) = inverse (hypreal_of_real r)";
-by (case_tac "r=#0" 1);
-by (asm_simp_tac (simpset() addsimps [REAL_DIVIDE_ZERO, INVERSE_ZERO,
- HYPREAL_INVERSE_ZERO, hypreal_of_real_zero]) 1);
-by (res_inst_tac [("c1","hypreal_of_real r")]
- (hypreal_mult_left_cancel RS iffD1) 1);
-by (stac (hypreal_of_real_mult RS sym) 2);
-by (auto_tac (claset(), simpset() addsimps [hypreal_of_real_one]));
-qed "hypreal_of_real_inverse";
-Addsimps [hypreal_of_real_inverse];
-
-Goal "hypreal_of_real (z1 / z2) = hypreal_of_real z1 / hypreal_of_real z2";
-by (simp_tac (simpset() addsimps [hypreal_divide_def, real_divide_def]) 1);
-qed "hypreal_of_real_divide";
-Addsimps [hypreal_of_real_divide];
-
-
-(*** Division lemmas ***)
-
-Goal "(0::hypreal)/x = 0";
-by (simp_tac (simpset() addsimps [hypreal_divide_def]) 1);
-qed "hypreal_zero_divide";
-
-Goal "x/1hr = x";
-by (simp_tac (simpset() addsimps [hypreal_divide_def]) 1);
-qed "hypreal_divide_one";
-Addsimps [hypreal_zero_divide, hypreal_divide_one];
-
-Goal "(x::hypreal) * (y/z) = (x*y)/z";
-by (simp_tac (simpset() addsimps [hypreal_divide_def, hypreal_mult_assoc]) 1);
-qed "hypreal_times_divide1_eq";
-
-Goal "(y/z) * (x::hypreal) = (y*x)/z";
-by (simp_tac (simpset() addsimps [hypreal_divide_def]@hypreal_mult_ac) 1);
-qed "hypreal_times_divide2_eq";
-
-Addsimps [hypreal_times_divide1_eq, hypreal_times_divide2_eq];
-
-Goal "(x::hypreal) / (y/z) = (x*z)/y";
-by (simp_tac (simpset() addsimps [hypreal_divide_def, hypreal_inverse_distrib]@
- hypreal_mult_ac) 1);
-qed "hypreal_divide_divide1_eq";
-
-Goal "((x::hypreal) / y) / z = x/(y*z)";
-by (simp_tac (simpset() addsimps [hypreal_divide_def, hypreal_inverse_distrib,
- hypreal_mult_assoc]) 1);
-qed "hypreal_divide_divide2_eq";
-
-Addsimps [hypreal_divide_divide1_eq, hypreal_divide_divide2_eq];
-
-(** As with multiplication, pull minus signs OUT of the / operator **)
-
-Goal "(-x) / (y::hypreal) = - (x/y)";
-by (simp_tac (simpset() addsimps [hypreal_divide_def]) 1);
-qed "hypreal_minus_divide_eq";
-Addsimps [hypreal_minus_divide_eq];
-
-Goal "(x / -(y::hypreal)) = - (x/y)";
-by (simp_tac (simpset() addsimps [hypreal_divide_def, hypreal_minus_inverse]) 1);
-qed "hypreal_divide_minus_eq";
-Addsimps [hypreal_divide_minus_eq];
-
-Goal "(x+y)/(z::hypreal) = x/z + y/z";
-by (simp_tac (simpset() addsimps [hypreal_divide_def, hypreal_add_mult_distrib]) 1);
-qed "hypreal_add_divide_distrib";
-
-
-Goal "x+x=x*(1hr+1hr)";
-by (simp_tac (simpset() addsimps [hypreal_add_mult_distrib2]) 1);
-qed "hypreal_add_self";
-
-(*FIXME: DELETE (used in Lim.ML) *)
-Goal "(z::hypreal) ~= 0 ==> x*y = (x*inverse(z))*(z*y)";
-by (asm_simp_tac (simpset() addsimps hypreal_mult_ac) 1);
-qed "lemma_chain";
-
-Goal "[|(x::hypreal) ~= 0; y ~= 0 |] ==> \
-\ inverse(x) + inverse(y) = (x + y)*inverse(x*y)";
-by (asm_full_simp_tac (simpset() addsimps [hypreal_inverse_distrib,
- hypreal_add_mult_distrib,hypreal_mult_assoc RS sym]) 1);
-by (stac hypreal_mult_assoc 1);
-by (rtac (hypreal_mult_left_commute RS subst) 1);
-by (asm_full_simp_tac (simpset() addsimps [hypreal_add_commute]) 1);
-qed "hypreal_inverse_add";
-
-Goal "x = -x ==> x = (0::hypreal)";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),simpset() addsimps [hypreal_minus,
- hypreal_zero_def]));
-by (Ultra_tac 1);
-qed "hypreal_self_eq_minus_self_zero";
-
-Goal "(x + x = 0) = (x = (0::hypreal))";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),simpset() addsimps [hypreal_add,
- hypreal_zero_def]));
-qed "hypreal_add_self_zero_cancel";
-Addsimps [hypreal_add_self_zero_cancel];
-
-Goal "(x + x + y = y) = (x = (0::hypreal))";
-by Auto_tac;
-by (dtac (hypreal_eq_minus_iff RS iffD1) 1 THEN dtac sym 1);
-by (auto_tac (claset(),simpset() addsimps [hypreal_add_assoc]));
-qed "hypreal_add_self_zero_cancel2";
-Addsimps [hypreal_add_self_zero_cancel2];
-
-Goal "(x + (x + y) = y) = (x = (0::hypreal))";
-by (simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1);
-qed "hypreal_add_self_zero_cancel2a";
-Addsimps [hypreal_add_self_zero_cancel2a];
-
-Goal "(b = -a) = (-b = (a::hypreal))";
-by Auto_tac;
-qed "hypreal_minus_eq_swap";
-
-Goal "(-b = -a) = (b = (a::hypreal))";
-by (asm_full_simp_tac (simpset() addsimps
- [hypreal_minus_eq_swap]) 1);
-qed "hypreal_minus_eq_cancel";
-Addsimps [hypreal_minus_eq_cancel];
-
-Goal "x < x + 1hr";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),simpset() addsimps [hypreal_add,
- hypreal_one_def,hypreal_less]));
-qed "hypreal_less_self_add_one";
-Addsimps [hypreal_less_self_add_one];
-
-Goal "((x::hypreal) + x = y + y) = (x = y)";
-by (res_inst_tac [("z","x")] eq_Abs_hypreal 1);
-by (res_inst_tac [("z","y")] eq_Abs_hypreal 1);
-by (auto_tac (claset(),simpset() addsimps [hypreal_add]));
-by (ALLGOALS(Ultra_tac));
-qed "hypreal_add_self_cancel";
-Addsimps [hypreal_add_self_cancel];
-
-Goal "(y = x + - y + x) = (y = (x::hypreal))";
-by Auto_tac;
-by (dres_inst_tac [("x1","y")]
- (hypreal_add_right_cancel RS iffD2) 1);
-by (auto_tac (claset(),simpset() addsimps hypreal_add_ac));
-qed "hypreal_add_self_minus_cancel";
-Addsimps [hypreal_add_self_minus_cancel];
-
-Goal "(y = x + (- y + x)) = (y = (x::hypreal))";
-by (asm_full_simp_tac (simpset() addsimps
- [hypreal_add_assoc RS sym])1);
-qed "hypreal_add_self_minus_cancel2";
-Addsimps [hypreal_add_self_minus_cancel2];
-
-(* of course, can prove this by "transfer" as well *)
-Goal "z + -x = y + (y + (-x + -z)) = (y = (z::hypreal))";
-by Auto_tac;
-by (dres_inst_tac [("x1","z")]
- (hypreal_add_right_cancel RS iffD2) 1);
-by (asm_full_simp_tac (simpset() addsimps
- [hypreal_minus_add_distrib RS sym] @ hypreal_add_ac
- delsimps [hypreal_minus_add_distrib]) 1);
-by (asm_full_simp_tac (simpset() addsimps
- [hypreal_add_assoc RS sym,hypreal_add_right_cancel]) 1);
-qed "hypreal_add_self_minus_cancel3";
-Addsimps [hypreal_add_self_minus_cancel3];
-
-Goal "(x * x = 0) = (x = (0::hypreal))";
-by Auto_tac;
-by (blast_tac (claset() addIs [hypreal_mult_not_0E]) 1);
-qed "hypreal_mult_self_eq_zero_iff";
-Addsimps [hypreal_mult_self_eq_zero_iff];
-
-Goalw [hypreal_diff_def] "(x<y) = (x-y < (0::hypreal))";
-by (rtac hypreal_less_minus_iff2 1);
-qed "hypreal_less_eq_diff";
-
-(*** Subtraction laws ***)
-
-Goal "x + (y - z) = (x + y) - (z::hypreal)";
-by (simp_tac (simpset() addsimps hypreal_diff_def::hypreal_add_ac) 1);
-qed "hypreal_add_diff_eq";
-
-Goal "(x - y) + z = (x + z) - (y::hypreal)";
-by (simp_tac (simpset() addsimps hypreal_diff_def::hypreal_add_ac) 1);
-qed "hypreal_diff_add_eq";
-
-Goal "(x - y) - z = x - (y + (z::hypreal))";
-by (simp_tac (simpset() addsimps hypreal_diff_def::hypreal_add_ac) 1);
-qed "hypreal_diff_diff_eq";
-
-Goal "x - (y - z) = (x + z) - (y::hypreal)";
-by (simp_tac (simpset() addsimps hypreal_diff_def::hypreal_add_ac) 1);
-qed "hypreal_diff_diff_eq2";
-
-Goal "(x-y < z) = (x < z + (y::hypreal))";
-by (stac hypreal_less_eq_diff 1);
-by (res_inst_tac [("y1", "z")] (hypreal_less_eq_diff RS ssubst) 1);
-by (simp_tac (simpset() addsimps hypreal_diff_def::hypreal_add_ac) 1);
-qed "hypreal_diff_less_eq";
-
-Goal "(x < z-y) = (x + (y::hypreal) < z)";
-by (stac hypreal_less_eq_diff 1);
-by (res_inst_tac [("y1", "z-y")] (hypreal_less_eq_diff RS ssubst) 1);
-by (simp_tac (simpset() addsimps hypreal_diff_def::hypreal_add_ac) 1);
-qed "hypreal_less_diff_eq";
-
-Goalw [hypreal_le_def] "(x-y <= z) = (x <= z + (y::hypreal))";
-by (simp_tac (simpset() addsimps [hypreal_less_diff_eq]) 1);
-qed "hypreal_diff_le_eq";
-
-Goalw [hypreal_le_def] "(x <= z-y) = (x + (y::hypreal) <= z)";
-by (simp_tac (simpset() addsimps [hypreal_diff_less_eq]) 1);
-qed "hypreal_le_diff_eq";
-
-Goalw [hypreal_diff_def] "(x-y = z) = (x = z + (y::hypreal))";
-by (auto_tac (claset(), simpset() addsimps [hypreal_add_assoc]));
-qed "hypreal_diff_eq_eq";
-
-Goalw [hypreal_diff_def] "(x = z-y) = (x + (y::hypreal) = z)";
-by (auto_tac (claset(), simpset() addsimps [hypreal_add_assoc]));
-qed "hypreal_eq_diff_eq";
-
-(*This list of rewrites simplifies (in)equalities by bringing subtractions
- to the top and then moving negative terms to the other side.
- Use with hypreal_add_ac*)
-val hypreal_compare_rls =
- [symmetric hypreal_diff_def,
- hypreal_add_diff_eq, hypreal_diff_add_eq, hypreal_diff_diff_eq, hypreal_diff_diff_eq2,
- hypreal_diff_less_eq, hypreal_less_diff_eq, hypreal_diff_le_eq, hypreal_le_diff_eq,
- hypreal_diff_eq_eq, hypreal_eq_diff_eq];
-
-
-(** For the cancellation simproc.
- The idea is to cancel like terms on opposite sides by subtraction **)
-
-Goal "(x::hypreal) - y = x' - y' ==> (x<y) = (x'<y')";
-by (stac hypreal_less_eq_diff 1);
-by (res_inst_tac [("y1", "y")] (hypreal_less_eq_diff RS ssubst) 1);
-by (Asm_simp_tac 1);
-qed "hypreal_less_eqI";
-
-Goal "(x::hypreal) - y = x' - y' ==> (y<=x) = (y'<=x')";
-by (dtac hypreal_less_eqI 1);
-by (asm_simp_tac (simpset() addsimps [hypreal_le_def]) 1);
-qed "hypreal_le_eqI";
-
-Goal "(x::hypreal) - y = x' - y' ==> (x=y) = (x'=y')";
-by Safe_tac;
-by (ALLGOALS
- (asm_full_simp_tac
- (simpset() addsimps [hypreal_eq_diff_eq, hypreal_diff_eq_eq])));
-qed "hypreal_eq_eqI";
-