src/HOL/Old_Number_Theory/Legacy_GCD.thy
changeset 44821 a92f65e174cf
parent 41541 1fa4725c4656
child 45270 d5b5c9259afd
--- a/src/HOL/Old_Number_Theory/Legacy_GCD.thy	Wed Sep 07 14:58:40 2011 +0200
+++ b/src/HOL/Old_Number_Theory/Legacy_GCD.thy	Wed Sep 07 09:02:58 2011 -0700
@@ -699,7 +699,7 @@
 lemma zgcd_zmult_distrib2: "0 \<le> k ==> k * zgcd m n = zgcd (k * m) (k * n)"
   by (simp del: minus_mult_right [symmetric]
       add: minus_mult_right nat_mult_distrib zgcd_def abs_if
-          mult_less_0_iff gcd_mult_distrib2 [symmetric] zmult_int [symmetric])
+          mult_less_0_iff gcd_mult_distrib2 [symmetric] of_nat_mult)
 
 lemma zgcd_zmult_distrib2_abs: "zgcd (k * m) (k * n) = abs k * zgcd m n"
   by (simp add: abs_if zgcd_zmult_distrib2)