src/HOL/Number_Theory/Fib.thy
changeset 44872 a98ef45122f3
parent 41959 b460124855b8
child 53077 a1b3784f8129
--- a/src/HOL/Number_Theory/Fib.thy	Sat Sep 10 22:11:55 2011 +0200
+++ b/src/HOL/Number_Theory/Fib.thy	Sat Sep 10 23:27:32 2011 +0200
@@ -18,48 +18,40 @@
 subsection {* Main definitions *}
 
 class fib =
-
-fixes 
-  fib :: "'a \<Rightarrow> 'a"
+  fixes fib :: "'a \<Rightarrow> 'a"
 
 
 (* definition for the natural numbers *)
 
 instantiation nat :: fib
-
-begin 
+begin
 
-fun 
-  fib_nat :: "nat \<Rightarrow> nat"
+fun fib_nat :: "nat \<Rightarrow> nat"
 where
   "fib_nat n =
    (if n = 0 then 0 else
    (if n = 1 then 1 else
      fib (n - 1) + fib (n - 2)))"
 
-instance proof qed
+instance ..
 
 end
 
 (* definition for the integers *)
 
 instantiation int :: fib
-
-begin 
+begin
 
-definition
-  fib_int :: "int \<Rightarrow> int"
-where  
-  "fib_int n = (if n >= 0 then int (fib (nat n)) else 0)"
+definition fib_int :: "int \<Rightarrow> int"
+  where "fib_int n = (if n >= 0 then int (fib (nat n)) else 0)"
 
-instance proof qed
+instance ..
 
 end
 
 
 subsection {* Set up Transfer *}
 
-
 lemma transfer_nat_int_fib:
   "(x::int) >= 0 \<Longrightarrow> fib (nat x) = nat (fib x)"
   unfolding fib_int_def by auto
@@ -68,18 +60,16 @@
   "n >= (0::int) \<Longrightarrow> fib n >= 0"
   by (auto simp add: fib_int_def)
 
-declare transfer_morphism_nat_int[transfer add return: 
+declare transfer_morphism_nat_int[transfer add return:
     transfer_nat_int_fib transfer_nat_int_fib_closure]
 
-lemma transfer_int_nat_fib:
-  "fib (int n) = int (fib n)"
+lemma transfer_int_nat_fib: "fib (int n) = int (fib n)"
   unfolding fib_int_def by auto
 
-lemma transfer_int_nat_fib_closure:
-  "is_nat n \<Longrightarrow> fib n >= 0"
+lemma transfer_int_nat_fib_closure: "is_nat n \<Longrightarrow> fib n >= 0"
   unfolding fib_int_def by auto
 
-declare transfer_morphism_int_nat[transfer add return: 
+declare transfer_morphism_int_nat[transfer add return:
     transfer_int_nat_fib transfer_int_nat_fib_closure]
 
 
@@ -123,7 +113,7 @@
 (* the need for One_nat_def is due to the natdiff_cancel_numerals
    procedure *)
 
-lemma fib_induct_nat: "P (0::nat) \<Longrightarrow> P (1::nat) \<Longrightarrow> 
+lemma fib_induct_nat: "P (0::nat) \<Longrightarrow> P (1::nat) \<Longrightarrow>
     (!!n. P n \<Longrightarrow> P (n + 1) \<Longrightarrow> P (n + 2)) \<Longrightarrow> P n"
   apply (atomize, induct n rule: nat_less_induct)
   apply auto
@@ -137,7 +127,7 @@
   apply (auto simp add: One_nat_def) (* again, natdiff_cancel *)
 done
 
-lemma fib_add_nat: "fib ((n::nat) + k + 1) = fib (k + 1) * fib (n + 1) + 
+lemma fib_add_nat: "fib ((n::nat) + k + 1) = fib (k + 1) * fib (n + 1) +
     fib k * fib n"
   apply (induct n rule: fib_induct_nat)
   apply auto
@@ -148,26 +138,24 @@
 (* hmmm. Why doesn't "n + (1 + (1 + k))" simplify to "n + k + 2"? *)
   apply (subgoal_tac "n + (k + 2) = n + (1 + (1 + k))")
   apply (erule ssubst) back back
-  apply (erule ssubst) back 
+  apply (erule ssubst) back
   apply auto
 done
 
-lemma fib_add'_nat: "fib (n + Suc k) = fib (Suc k) * fib (Suc n) + 
-    fib k * fib n"
+lemma fib_add'_nat: "fib (n + Suc k) =
+    fib (Suc k) * fib (Suc n) + fib k * fib n"
   using fib_add_nat by (auto simp add: One_nat_def)
 
 
 (* transfer from nats to ints *)
-lemma fib_add_int [rule_format]: "(n::int) >= 0 \<Longrightarrow> k >= 0 \<Longrightarrow>
-    fib (n + k + 1) = fib (k + 1) * fib (n + 1) + 
-    fib k * fib n "
-
+lemma fib_add_int: "(n::int) >= 0 \<Longrightarrow> k >= 0 \<Longrightarrow>
+    fib (n + k + 1) = fib (k + 1) * fib (n + 1) +  fib k * fib n "
   by (rule fib_add_nat [transferred])
 
 lemma fib_neq_0_nat: "(n::nat) > 0 \<Longrightarrow> fib n ~= 0"
   apply (induct n rule: fib_induct_nat)
   apply (auto simp add: fib_plus_2_nat)
-done
+  done
 
 lemma fib_gr_0_nat: "(n::nat) > 0 \<Longrightarrow> fib n > 0"
   by (frule fib_neq_0_nat, simp)
@@ -180,21 +168,20 @@
   much easier using integers, not natural numbers!
 *}
 
-lemma fib_Cassini_aux_int: "fib (int n + 2) * fib (int n) - 
+lemma fib_Cassini_aux_int: "fib (int n + 2) * fib (int n) -
     (fib (int n + 1))^2 = (-1)^(n + 1)"
   apply (induct n)
-  apply (auto simp add: field_simps power2_eq_square fib_reduce_int
-      power_add)
-done
+  apply (auto simp add: field_simps power2_eq_square fib_reduce_int power_add)
+  done
 
-lemma fib_Cassini_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n - 
+lemma fib_Cassini_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n -
     (fib (n + 1))^2 = (-1)^(nat n + 1)"
   by (insert fib_Cassini_aux_int [of "nat n"], auto)
 
 (*
-lemma fib_Cassini'_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n = 
+lemma fib_Cassini'_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n =
     (fib (n + 1))^2 + (-1)^(nat n + 1)"
-  by (frule fib_Cassini_int, simp) 
+  by (frule fib_Cassini_int, simp)
 *)
 
 lemma fib_Cassini'_int: "n >= 0 \<Longrightarrow> fib ((n::int) + 2) * fib n =
@@ -204,12 +191,11 @@
   apply (subst tsub_eq)
   apply (insert fib_gr_0_int [of "n + 1"], force)
   apply auto
-done
+  done
 
 lemma fib_Cassini_nat: "fib ((n::nat) + 2) * fib n =
-  (if even n then (fib (n + 1))^2 - 1
-   else (fib (n + 1))^2 + 1)"
-
+    (if even n then (fib (n + 1))^2 - 1
+     else (fib (n + 1))^2 + 1)"
   by (rule fib_Cassini'_int [transferred, of n], auto)
 
 
@@ -222,13 +208,12 @@
   apply (auto simp add: Suc_eq_plus1) (* again, natdiff_cancel *)
   apply (subst add_commute, auto)
   apply (subst gcd_commute_nat, auto simp add: field_simps)
-done
+  done
 
 lemma coprime_fib_Suc_nat: "coprime (fib n) (fib (Suc n))"
   using coprime_fib_plus_1_nat by (simp add: One_nat_def)
 
-lemma coprime_fib_plus_1_int: 
-    "n >= 0 \<Longrightarrow> coprime (fib (n::int)) (fib (n + 1))"
+lemma coprime_fib_plus_1_int: "n >= 0 \<Longrightarrow> coprime (fib (n::int)) (fib (n + 1))"
   by (erule coprime_fib_plus_1_nat [transferred])
 
 lemma gcd_fib_add_nat: "gcd (fib (m::nat)) (fib (n + m)) = gcd (fib m) (fib n)"
@@ -243,51 +228,53 @@
   apply (subst gcd_commute_nat)
   apply (rule gcd_mult_cancel_nat)
   apply (rule coprime_fib_plus_1_nat)
-done
+  done
 
-lemma gcd_fib_add_int [rule_format]: "m >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow> 
+lemma gcd_fib_add_int [rule_format]: "m >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow>
     gcd (fib (m::int)) (fib (n + m)) = gcd (fib m) (fib n)"
   by (erule gcd_fib_add_nat [transferred])
 
-lemma gcd_fib_diff_nat: "(m::nat) \<le> n \<Longrightarrow> 
+lemma gcd_fib_diff_nat: "(m::nat) \<le> n \<Longrightarrow>
     gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
   by (simp add: gcd_fib_add_nat [symmetric, of _ "n-m"])
 
-lemma gcd_fib_diff_int: "0 <= (m::int) \<Longrightarrow> m \<le> n \<Longrightarrow> 
+lemma gcd_fib_diff_int: "0 <= (m::int) \<Longrightarrow> m \<le> n \<Longrightarrow>
     gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
   by (simp add: gcd_fib_add_int [symmetric, of _ "n-m"])
 
-lemma gcd_fib_mod_nat: "0 < (m::nat) \<Longrightarrow> 
+lemma gcd_fib_mod_nat: "0 < (m::nat) \<Longrightarrow>
     gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
 proof (induct n rule: less_induct)
   case (less n)
   from less.prems have pos_m: "0 < m" .
   show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
   proof (cases "m < n")
-    case True note m_n = True
-    then have m_n': "m \<le> n" by auto
+    case True
+    then have "m \<le> n" by auto
     with pos_m have pos_n: "0 < n" by auto
-    with pos_m m_n have diff: "n - m < n" by auto
+    with pos_m `m < n` have diff: "n - m < n" by auto
     have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))"
-    by (simp add: mod_if [of n]) (insert m_n, auto)
-    also have "\<dots> = gcd (fib m)  (fib (n - m))" 
+      by (simp add: mod_if [of n]) (insert `m < n`, auto)
+    also have "\<dots> = gcd (fib m)  (fib (n - m))"
       by (simp add: less.hyps diff pos_m)
-    also have "\<dots> = gcd (fib m) (fib n)" by (simp add: gcd_fib_diff_nat m_n')
+    also have "\<dots> = gcd (fib m) (fib n)"
+      by (simp add: gcd_fib_diff_nat `m \<le> n`)
     finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" .
   next
-    case False then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-    by (cases "m = n") auto
+    case False
+    then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
+      by (cases "m = n") auto
   qed
 qed
 
-lemma gcd_fib_mod_int: 
+lemma gcd_fib_mod_int:
   assumes "0 < (m::int)" and "0 <= n"
   shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
   apply (rule gcd_fib_mod_nat [transferred])
   using assms apply auto
   done
 
-lemma fib_gcd_nat: "fib (gcd (m::nat) n) = gcd (fib m) (fib n)"  
+lemma fib_gcd_nat: "fib (gcd (m::nat) n) = gcd (fib m) (fib n)"
     -- {* Law 6.111 *}
   apply (induct m n rule: gcd_nat_induct)
   apply (simp_all add: gcd_non_0_nat gcd_commute_nat gcd_fib_mod_nat)
@@ -297,7 +284,7 @@
     fib (gcd (m::int) n) = gcd (fib m) (fib n)"
   by (erule fib_gcd_nat [transferred])
 
-lemma atMost_plus_one_nat: "{..(k::nat) + 1} = insert (k + 1) {..k}" 
+lemma atMost_plus_one_nat: "{..(k::nat) + 1} = insert (k + 1) {..k}"
   by auto
 
 theorem fib_mult_eq_setsum_nat: