doc-src/ZF/document/FOL.tex
changeset 48946 a9b8344f5196
parent 43077 7d69154d824b
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/ZF/document/FOL.tex	Mon Aug 27 21:46:00 2012 +0200
@@ -0,0 +1,855 @@
+%!TEX root = logics-ZF.tex
+\chapter{First-Order Logic}
+\index{first-order logic|(}
+
+Isabelle implements Gentzen's natural deduction systems {\sc nj} and {\sc
+  nk}.  Intuitionistic first-order logic is defined first, as theory
+\thydx{IFOL}.  Classical logic, theory \thydx{FOL}, is
+obtained by adding the double negation rule.  Basic proof procedures are
+provided.  The intuitionistic prover works with derived rules to simplify
+implications in the assumptions.  Classical~\texttt{FOL} employs Isabelle's
+classical reasoner, which simulates a sequent calculus.
+
+\section{Syntax and rules of inference}
+The logic is many-sorted, using Isabelle's type classes.  The class of
+first-order terms is called \cldx{term} and is a subclass of \isa{logic}.
+No types of individuals are provided, but extensions can define types such
+as \isa{nat::term} and type constructors such as \isa{list::(term)term}
+(see the examples directory, \texttt{FOL/ex}).  Below, the type variable
+$\alpha$ ranges over class \isa{term}; the equality symbol and quantifiers
+are polymorphic (many-sorted).  The type of formulae is~\tydx{o}, which
+belongs to class~\cldx{logic}.  Figure~\ref{fol-syntax} gives the syntax.
+Note that $a$\verb|~=|$b$ is translated to $\neg(a=b)$.
+
+Figure~\ref{fol-rules} shows the inference rules with their names.
+Negation is defined in the usual way for intuitionistic logic; $\neg P$
+abbreviates $P\imp\bot$.  The biconditional~($\bimp$) is defined through
+$\conj$ and~$\imp$; introduction and elimination rules are derived for it.
+
+The unique existence quantifier, $\exists!x.P(x)$, is defined in terms
+of~$\exists$ and~$\forall$.  An Isabelle binder, it admits nested
+quantifications.  For instance, $\exists!x\;y.P(x,y)$ abbreviates
+$\exists!x. \exists!y.P(x,y)$; note that this does not mean that there
+exists a unique pair $(x,y)$ satisfying~$P(x,y)$.
+
+Some intuitionistic derived rules are shown in
+Fig.\ts\ref{fol-int-derived}, again with their names.  These include
+rules for the defined symbols $\neg$, $\bimp$ and $\exists!$.  Natural
+deduction typically involves a combination of forward and backward
+reasoning, particularly with the destruction rules $(\conj E)$,
+$({\imp}E)$, and~$(\forall E)$.  Isabelle's backward style handles these
+rules badly, so sequent-style rules are derived to eliminate conjunctions,
+implications, and universal quantifiers.  Used with elim-resolution,
+\tdx{allE} eliminates a universal quantifier while \tdx{all_dupE}
+re-inserts the quantified formula for later use.  The rules
+\isa{conj\_impE}, etc., support the intuitionistic proof procedure
+(see~\S\ref{fol-int-prover}).
+
+See the on-line theory library for complete listings of the rules and
+derived rules.
+
+\begin{figure} 
+\begin{center}
+\begin{tabular}{rrr} 
+  \it name      &\it meta-type  & \it description \\ 
+  \cdx{Trueprop}& $o\To prop$           & coercion to $prop$\\
+  \cdx{Not}     & $o\To o$              & negation ($\neg$) \\
+  \cdx{True}    & $o$                   & tautology ($\top$) \\
+  \cdx{False}   & $o$                   & absurdity ($\bot$)
+\end{tabular}
+\end{center}
+\subcaption{Constants}
+
+\begin{center}
+\begin{tabular}{llrrr} 
+  \it symbol &\it name     &\it meta-type & \it priority & \it description \\
+  \sdx{ALL}  & \cdx{All}  & $(\alpha\To o)\To o$ & 10 & 
+        universal quantifier ($\forall$) \\
+  \sdx{EX}   & \cdx{Ex}   & $(\alpha\To o)\To o$ & 10 & 
+        existential quantifier ($\exists$) \\
+  \isa{EX!}  & \cdx{Ex1}  & $(\alpha\To o)\To o$ & 10 & 
+        unique existence ($\exists!$)
+\end{tabular}
+\index{*"E"X"! symbol}
+\end{center}
+\subcaption{Binders} 
+
+\begin{center}
+\index{*"= symbol}
+\index{&@{\tt\&} symbol}
+\index{"!@{\tt\char124} symbol} %\char124 is vertical bar. We use ! because | stopped working
+\index{*"-"-"> symbol}
+\index{*"<"-"> symbol}
+\begin{tabular}{rrrr} 
+  \it symbol    & \it meta-type         & \it priority & \it description \\ 
+  \tt =         & $[\alpha,\alpha]\To o$ & Left 50 & equality ($=$) \\
+  \tt \&        & $[o,o]\To o$          & Right 35 & conjunction ($\conj$) \\
+  \tt |         & $[o,o]\To o$          & Right 30 & disjunction ($\disj$) \\
+  \tt -->       & $[o,o]\To o$          & Right 25 & implication ($\imp$) \\
+  \tt <->       & $[o,o]\To o$          & Right 25 & biconditional ($\bimp$) 
+\end{tabular}
+\end{center}
+\subcaption{Infixes}
+
+\dquotes
+\[\begin{array}{rcl}
+ formula & = & \hbox{expression of type~$o$} \\
+         & | & term " = " term \quad| \quad term " \ttilde= " term \\
+         & | & "\ttilde\ " formula \\
+         & | & formula " \& " formula \\
+         & | & formula " | " formula \\
+         & | & formula " --> " formula \\
+         & | & formula " <-> " formula \\
+         & | & "ALL~" id~id^* " . " formula \\
+         & | & "EX~~" id~id^* " . " formula \\
+         & | & "EX!~" id~id^* " . " formula
+  \end{array}
+\]
+\subcaption{Grammar}
+\caption{Syntax of \texttt{FOL}} \label{fol-syntax}
+\end{figure}
+
+
+\begin{figure} 
+\begin{ttbox}
+\tdx{refl}        a=a
+\tdx{subst}       [| a=b;  P(a) |] ==> P(b)
+\subcaption{Equality rules}
+
+\tdx{conjI}       [| P;  Q |] ==> P&Q
+\tdx{conjunct1}   P&Q ==> P
+\tdx{conjunct2}   P&Q ==> Q
+
+\tdx{disjI1}      P ==> P|Q
+\tdx{disjI2}      Q ==> P|Q
+\tdx{disjE}       [| P|Q;  P ==> R;  Q ==> R |] ==> R
+
+\tdx{impI}        (P ==> Q) ==> P-->Q
+\tdx{mp}          [| P-->Q;  P |] ==> Q
+
+\tdx{FalseE}      False ==> P
+\subcaption{Propositional rules}
+
+\tdx{allI}        (!!x. P(x))  ==> (ALL x.P(x))
+\tdx{spec}        (ALL x.P(x)) ==> P(x)
+
+\tdx{exI}         P(x) ==> (EX x.P(x))
+\tdx{exE}         [| EX x.P(x);  !!x. P(x) ==> R |] ==> R
+\subcaption{Quantifier rules}
+
+\tdx{True_def}    True        == False-->False
+\tdx{not_def}     ~P          == P-->False
+\tdx{iff_def}     P<->Q       == (P-->Q) & (Q-->P)
+\tdx{ex1_def}     EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)
+\subcaption{Definitions}
+\end{ttbox}
+
+\caption{Rules of intuitionistic logic} \label{fol-rules}
+\end{figure}
+
+
+\begin{figure} 
+\begin{ttbox}
+\tdx{sym}       a=b ==> b=a
+\tdx{trans}     [| a=b;  b=c |] ==> a=c
+\tdx{ssubst}    [| b=a;  P(a) |] ==> P(b)
+\subcaption{Derived equality rules}
+
+\tdx{TrueI}     True
+
+\tdx{notI}      (P ==> False) ==> ~P
+\tdx{notE}      [| ~P;  P |] ==> R
+
+\tdx{iffI}      [| P ==> Q;  Q ==> P |] ==> P<->Q
+\tdx{iffE}      [| P <-> Q;  [| P-->Q; Q-->P |] ==> R |] ==> R
+\tdx{iffD1}     [| P <-> Q;  P |] ==> Q            
+\tdx{iffD2}     [| P <-> Q;  Q |] ==> P
+
+\tdx{ex1I}      [| P(a);  !!x. P(x) ==> x=a |]  ==>  EX! x. P(x)
+\tdx{ex1E}      [| EX! x.P(x);  !!x.[| P(x);  ALL y. P(y) --> y=x |] ==> R 
+          |] ==> R
+\subcaption{Derived rules for \(\top\), \(\neg\), \(\bimp\) and \(\exists!\)}
+
+\tdx{conjE}     [| P&Q;  [| P; Q |] ==> R |] ==> R
+\tdx{impE}      [| P-->Q;  P;  Q ==> R |] ==> R
+\tdx{allE}      [| ALL x.P(x);  P(x) ==> R |] ==> R
+\tdx{all_dupE}  [| ALL x.P(x);  [| P(x); ALL x.P(x) |] ==> R |] ==> R
+\subcaption{Sequent-style elimination rules}
+
+\tdx{conj_impE} [| (P&Q)-->S;  P-->(Q-->S) ==> R |] ==> R
+\tdx{disj_impE} [| (P|Q)-->S;  [| P-->S; Q-->S |] ==> R |] ==> R
+\tdx{imp_impE}  [| (P-->Q)-->S;  [| P; Q-->S |] ==> Q;  S ==> R |] ==> R
+\tdx{not_impE}  [| ~P --> S;  P ==> False;  S ==> R |] ==> R
+\tdx{iff_impE}  [| (P<->Q)-->S; [| P; Q-->S |] ==> Q; [| Q; P-->S |] ==> P;
+             S ==> R |] ==> R
+\tdx{all_impE}  [| (ALL x.P(x))-->S;  !!x.P(x);  S ==> R |] ==> R
+\tdx{ex_impE}   [| (EX x.P(x))-->S;  P(a)-->S ==> R |] ==> R
+\end{ttbox}
+\subcaption{Intuitionistic simplification of implication}
+\caption{Derived rules for intuitionistic logic} \label{fol-int-derived}
+\end{figure}
+
+
+\section{Generic packages}
+FOL instantiates most of Isabelle's generic packages.
+\begin{itemize}
+\item 
+It instantiates the simplifier, which is invoked through the method 
+\isa{simp}.  Both equality ($=$) and the biconditional
+($\bimp$) may be used for rewriting.  
+
+\item 
+It instantiates the classical reasoner, which is invoked mainly through the 
+methods \isa{blast} and \isa{auto}.  See~\S\ref{fol-cla-prover}
+for details. 
+%
+%\item FOL provides the tactic \ttindex{hyp_subst_tac}, which substitutes for
+%  an equality throughout a subgoal and its hypotheses.  This tactic uses FOL's
+%  general substitution rule.
+\end{itemize}
+
+\begin{warn}\index{simplification!of conjunctions}%
+  Simplifying $a=b\conj P(a)$ to $a=b\conj P(b)$ is often advantageous.  The
+  left part of a conjunction helps in simplifying the right part.  This effect
+  is not available by default: it can be slow.  It can be obtained by
+  including the theorem \isa{conj_cong}\index{*conj_cong (rule)}%
+  as a congruence rule in
+  simplification, \isa{simp cong:\ conj\_cong}.
+\end{warn}
+
+
+\section{Intuitionistic proof procedures} \label{fol-int-prover}
+Implication elimination (the rules~\isa{mp} and~\isa{impE}) pose
+difficulties for automated proof.  In intuitionistic logic, the assumption
+$P\imp Q$ cannot be treated like $\neg P\disj Q$.  Given $P\imp Q$, we may
+use~$Q$ provided we can prove~$P$; the proof of~$P$ may require repeated
+use of $P\imp Q$.  If the proof of~$P$ fails then the whole branch of the
+proof must be abandoned.  Thus intuitionistic propositional logic requires
+backtracking.  
+
+For an elementary example, consider the intuitionistic proof of $Q$ from
+$P\imp Q$ and $(P\imp Q)\imp P$.  The implication $P\imp Q$ is needed
+twice:
+\[ \infer[({\imp}E)]{Q}{P\imp Q &
+       \infer[({\imp}E)]{P}{(P\imp Q)\imp P & P\imp Q}} 
+\]
+The theorem prover for intuitionistic logic does not use~\isa{impE}.\@
+Instead, it simplifies implications using derived rules
+(Fig.\ts\ref{fol-int-derived}).  It reduces the antecedents of implications
+to atoms and then uses Modus Ponens: from $P\imp Q$ and~$P$ deduce~$Q$.
+The rules \tdx{conj_impE} and \tdx{disj_impE} are 
+straightforward: $(P\conj Q)\imp S$ is equivalent to $P\imp (Q\imp S)$, and
+$(P\disj Q)\imp S$ is equivalent to the conjunction of $P\imp S$ and $Q\imp
+S$.  The other \ldots\isa{\_impE} rules are unsafe; the method requires
+backtracking.  All the rules are derived in the same simple manner.
+
+Dyckhoff has independently discovered similar rules, and (more importantly)
+has demonstrated their completeness for propositional
+logic~\cite{dyckhoff}.  However, the tactics given below are not complete
+for first-order logic because they discard universally quantified
+assumptions after a single use. These are \ML{} functions, and are listed
+below with their \ML{} type:
+\begin{ttbox} 
+mp_tac              : int -> tactic
+eq_mp_tac           : int -> tactic
+IntPr.safe_step_tac : int -> tactic
+IntPr.safe_tac      :        tactic
+IntPr.inst_step_tac : int -> tactic
+IntPr.step_tac      : int -> tactic
+IntPr.fast_tac      : int -> tactic
+IntPr.best_tac      : int -> tactic
+\end{ttbox}
+Most of these belong to the structure \ML{} structure \texttt{IntPr} and resemble the
+tactics of Isabelle's classical reasoner.  There are no corresponding
+Isar methods, but you can use the 
+\isa{tactic} method to call \ML{} tactics in an Isar script:
+\begin{isabelle}
+\isacommand{apply}\ (tactic\ {* IntPr.fast\_tac 1*})
+\end{isabelle}
+Here is a description of each tactic:
+
+\begin{ttdescription}
+\item[\ttindexbold{mp_tac} {\it i}] 
+attempts to use \tdx{notE} or \tdx{impE} within the assumptions in
+subgoal $i$.  For each assumption of the form $\neg P$ or $P\imp Q$, it
+searches for another assumption unifiable with~$P$.  By
+contradiction with $\neg P$ it can solve the subgoal completely; by Modus
+Ponens it can replace the assumption $P\imp Q$ by $Q$.  The tactic can
+produce multiple outcomes, enumerating all suitable pairs of assumptions.
+
+\item[\ttindexbold{eq_mp_tac} {\it i}] 
+is like \texttt{mp_tac} {\it i}, but may not instantiate unknowns --- thus, it
+is safe.
+
+\item[\ttindexbold{IntPr.safe_step_tac} $i$] performs a safe step on
+subgoal~$i$.  This may include proof by assumption or Modus Ponens (taking
+care not to instantiate unknowns), or \texttt{hyp_subst_tac}. 
+
+\item[\ttindexbold{IntPr.safe_tac}] repeatedly performs safe steps on all 
+subgoals.  It is deterministic, with at most one outcome.
+
+\item[\ttindexbold{IntPr.inst_step_tac} $i$] is like \texttt{safe_step_tac},
+but allows unknowns to be instantiated.
+
+\item[\ttindexbold{IntPr.step_tac} $i$] tries \texttt{safe_tac} or {\tt
+    inst_step_tac}, or applies an unsafe rule.  This is the basic step of
+  the intuitionistic proof procedure.
+
+\item[\ttindexbold{IntPr.fast_tac} $i$] applies \texttt{step_tac}, using
+depth-first search, to solve subgoal~$i$.
+
+\item[\ttindexbold{IntPr.best_tac} $i$] applies \texttt{step_tac}, using
+best-first search (guided by the size of the proof state) to solve subgoal~$i$.
+\end{ttdescription}
+Here are some of the theorems that \texttt{IntPr.fast_tac} proves
+automatically.  The latter three date from {\it Principia Mathematica}
+(*11.53, *11.55, *11.61)~\cite{principia}.
+\begin{ttbox}
+~~P & ~~(P --> Q) --> ~~Q
+(ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))
+(EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))
+(EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))
+\end{ttbox}
+
+
+
+\begin{figure} 
+\begin{ttbox}
+\tdx{excluded_middle}    ~P | P
+
+\tdx{disjCI}    (~Q ==> P) ==> P|Q
+\tdx{exCI}      (ALL x. ~P(x) ==> P(a)) ==> EX x.P(x)
+\tdx{impCE}     [| P-->Q; ~P ==> R; Q ==> R |] ==> R
+\tdx{iffCE}     [| P<->Q;  [| P; Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R
+\tdx{notnotD}   ~~P ==> P
+\tdx{swap}      ~P ==> (~Q ==> P) ==> Q
+\end{ttbox}
+\caption{Derived rules for classical logic} \label{fol-cla-derived}
+\end{figure}
+
+
+\section{Classical proof procedures} \label{fol-cla-prover}
+The classical theory, \thydx{FOL}, consists of intuitionistic logic plus
+the rule
+$$ \vcenter{\infer{P}{\infer*{P}{[\neg P]}}} \eqno(classical) $$
+\noindent
+Natural deduction in classical logic is not really all that natural.  FOL
+derives classical introduction rules for $\disj$ and~$\exists$, as well as
+classical elimination rules for~$\imp$ and~$\bimp$, and the swap rule (see
+Fig.\ts\ref{fol-cla-derived}).
+
+The classical reasoner is installed.  The most useful methods are
+\isa{blast} (pure classical reasoning) and \isa{auto} (classical reasoning
+combined with simplification), but the full range of
+methods is available, including \isa{clarify},
+\isa{fast}, \isa{best} and \isa{force}. 
+ See the 
+\iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
+        {Chap.\ts\ref{chap:classical}} 
+and the \emph{Tutorial}~\cite{isa-tutorial}
+for more discussion of classical proof methods.
+
+
+\section{An intuitionistic example}
+Here is a session similar to one in the book {\em Logic and Computation}
+\cite[pages~222--3]{paulson87}. It illustrates the treatment of
+quantifier reasoning, which is different in Isabelle than it is in
+{\sc lcf}-based theorem provers such as {\sc hol}.  
+
+The theory header specifies that we are working in intuitionistic
+logic by designating \isa{IFOL} rather than \isa{FOL} as the parent
+theory:
+\begin{isabelle}
+\isacommand{theory}\ IFOL\_examples\ \isacommand{imports}\ IFOL\isanewline
+\isacommand{begin}
+\end{isabelle}
+The proof begins by entering the goal, then applying the rule $({\imp}I)$.
+\begin{isabelle}
+\isacommand{lemma}\ "(EX\ y.\ ALL\ x.\ Q(x,y))\ -->\ \ (ALL\ x.\ EX\ y.\ Q(x,y))"\isanewline
+\ 1.\ (\isasymexists y.\ \isasymforall x.\ Q(x,\ y))\
+\isasymlongrightarrow \ (\isasymforall x.\ \isasymexists y.\ Q(x,\ y))
+\isanewline
+\isacommand{apply}\ (rule\ impI)\isanewline
+\ 1.\ \isasymexists y.\ \isasymforall x.\ Q(x,\ y)\
+\isasymLongrightarrow \ \isasymforall x.\ \isasymexists y.\ Q(x,\ y)
+\end{isabelle}
+Isabelle's output is shown as it would appear using Proof General.
+In this example, we shall never have more than one subgoal.  Applying
+$({\imp}I)$ replaces~\isa{\isasymlongrightarrow}
+by~\isa{\isasymLongrightarrow}, so that
+\(\ex{y}\all{x}Q(x,y)\) becomes an assumption.  We have the choice of
+$({\exists}E)$ and $({\forall}I)$; let us try the latter.
+\begin{isabelle}
+\isacommand{apply}\ (rule\ allI)\isanewline
+\ 1.\ \isasymAnd x.\ \isasymexists y.\ \isasymforall x.\ Q(x,\ y)\
+\isasymLongrightarrow \ \isasymexists y.\ Q(x,\ y)\hfill\((*)\)
+\end{isabelle}
+Applying $({\forall}I)$ replaces the \isa{\isasymforall
+x} (in ASCII, \isa{ALL~x}) by \isa{\isasymAnd x}
+(or \isa{!!x}), replacing FOL's universal quantifier by Isabelle's 
+meta universal quantifier.  The bound variable is a {\bf parameter} of
+the subgoal.  We now must choose between $({\exists}I)$ and
+$({\exists}E)$.  What happens if the wrong rule is chosen?
+\begin{isabelle}
+\isacommand{apply}\ (rule\ exI)\isanewline
+\ 1.\ \isasymAnd x.\ \isasymexists y.\ \isasymforall x.\ Q(x,\ y)\
+\isasymLongrightarrow \ Q(x,\ ?y2(x))
+\end{isabelle}
+The new subgoal~1 contains the function variable \isa{?y2}.  Instantiating
+\isa{?y2} can replace~\isa{?y2(x)} by a term containing~\isa{x}, even
+though~\isa{x} is a bound variable.  Now we analyse the assumption
+\(\exists y.\forall x. Q(x,y)\) using elimination rules:
+\begin{isabelle}
+\isacommand{apply}\ (erule\ exE)\isanewline
+\ 1.\ \isasymAnd x\ y.\ \isasymforall x.\ Q(x,\ y)\ \isasymLongrightarrow \ Q(x,\ ?y2(x))
+\end{isabelle}
+Applying $(\exists E)$ has produced the parameter \isa{y} and stripped the
+existential quantifier from the assumption.  But the subgoal is unprovable:
+there is no way to unify \isa{?y2(x)} with the bound variable~\isa{y}.
+Using Proof General, we can return to the critical point, marked
+$(*)$ above.  This time we apply $({\exists}E)$:
+\begin{isabelle}
+\isacommand{apply}\ (erule\ exE)\isanewline
+\ 1.\ \isasymAnd x\ y.\ \isasymforall x.\ Q(x,\ y)\
+\isasymLongrightarrow \ \isasymexists y.\ Q(x,\ y)
+\end{isabelle}
+We now have two parameters and no scheme variables.  Applying
+$({\exists}I)$ and $({\forall}E)$ produces two scheme variables, which are
+applied to those parameters.  Parameters should be produced early, as this
+example demonstrates.
+\begin{isabelle}
+\isacommand{apply}\ (rule\ exI)\isanewline
+\ 1.\ \isasymAnd x\ y.\ \isasymforall x.\ Q(x,\ y)\
+\isasymLongrightarrow \ Q(x,\ ?y3(x,\ y))
+\isanewline
+\isacommand{apply}\ (erule\ allE)\isanewline
+\ 1.\ \isasymAnd x\ y.\ Q(?x4(x,\ y),\ y)\ \isasymLongrightarrow \
+Q(x,\ ?y3(x,\ y))
+\end{isabelle}
+The subgoal has variables \isa{?y3} and \isa{?x4} applied to both
+parameters.  The obvious projection functions unify \isa{?x4(x,y)} with~\isa{
+x} and \isa{?y3(x,y)} with~\isa{y}.
+\begin{isabelle}
+\isacommand{apply}\ assumption\isanewline
+No\ subgoals!\isanewline
+\isacommand{done}
+\end{isabelle}
+The theorem was proved in six method invocations, not counting the
+abandoned ones.  But proof checking is tedious, and the \ML{} tactic
+\ttindex{IntPr.fast_tac} can prove the theorem in one step.
+\begin{isabelle}
+\isacommand{lemma}\ "(EX\ y.\ ALL\ x.\ Q(x,y))\ -->\ \ (ALL\ x.\ EX\ y.\ Q(x,y))"\isanewline
+\ 1.\ (\isasymexists y.\ \isasymforall x.\ Q(x,\ y))\
+\isasymlongrightarrow \ (\isasymforall x.\ \isasymexists y.\ Q(x,\ y))
+\isanewline
+\isacommand{by} (tactic \ttlbrace*IntPr.fast_tac 1*\ttrbrace)\isanewline
+No\ subgoals!
+\end{isabelle}
+
+
+\section{An example of intuitionistic negation}
+The following example demonstrates the specialized forms of implication
+elimination.  Even propositional formulae can be difficult to prove from
+the basic rules; the specialized rules help considerably.  
+
+Propositional examples are easy to invent.  As Dummett notes~\cite[page
+28]{dummett}, $\neg P$ is classically provable if and only if it is
+intuitionistically provable;  therefore, $P$ is classically provable if and
+only if $\neg\neg P$ is intuitionistically provable.%
+\footnote{This remark holds only for propositional logic, not if $P$ is
+  allowed to contain quantifiers.}
+%
+Proving $\neg\neg P$ intuitionistically is
+much harder than proving~$P$ classically.
+
+Our example is the double negation of the classical tautology $(P\imp
+Q)\disj (Q\imp P)$.  The first step is apply the
+\isa{unfold} method, which expands
+negations to implications using the definition $\neg P\equiv P\imp\bot$
+and allows use of the special implication rules.
+\begin{isabelle}
+\isacommand{lemma}\ "\isachartilde \ \isachartilde \ ((P-->Q)\ |\ (Q-->P))"\isanewline
+\ 1.\ \isasymnot \ \isasymnot \ ((P\ \isasymlongrightarrow \ Q)\ \isasymor \ (Q\ \isasymlongrightarrow \ P))
+\isanewline
+\isacommand{apply}\ (unfold\ not\_def)\isanewline
+\ 1.\ ((P\ \isasymlongrightarrow \ Q)\ \isasymor \ (Q\ \isasymlongrightarrow \ P)\ \isasymlongrightarrow \ False)\ \isasymlongrightarrow \ False%
+\end{isabelle}
+The next step is a trivial use of $(\imp I)$.
+\begin{isabelle}
+\isacommand{apply}\ (rule\ impI)\isanewline
+\ 1.\ (P\ \isasymlongrightarrow \ Q)\ \isasymor \ (Q\ \isasymlongrightarrow \ P)\ \isasymlongrightarrow \ False\ \isasymLongrightarrow \ False%
+\end{isabelle}
+By $(\imp E)$ it would suffice to prove $(P\imp Q)\disj (Q\imp P)$, but
+that formula is not a theorem of intuitionistic logic.  Instead, we
+apply the specialized implication rule \tdx{disj_impE}.  It splits the
+assumption into two assumptions, one for each disjunct.
+\begin{isabelle}
+\isacommand{apply}\ (erule\ disj\_impE)\isanewline
+\ 1.\ \isasymlbrakk (P\ \isasymlongrightarrow \ Q)\ \isasymlongrightarrow \ False;\ (Q\ \isasymlongrightarrow \ P)\ \isasymlongrightarrow \ False\isasymrbrakk \ \isasymLongrightarrow \
+False
+\end{isabelle}
+We cannot hope to prove $P\imp Q$ or $Q\imp P$ separately, but
+their negations are inconsistent.  Applying \tdx{imp_impE} breaks down
+the assumption $\neg(P\imp Q)$, asking to show~$Q$ while providing new
+assumptions~$P$ and~$\neg Q$.
+\begin{isabelle}
+\isacommand{apply}\ (erule\ imp\_impE)\isanewline
+\ 1.\ \isasymlbrakk (Q\ \isasymlongrightarrow \ P)\ \isasymlongrightarrow \ False;\ P;\ Q\ \isasymlongrightarrow \ False\isasymrbrakk \ \isasymLongrightarrow \ Q\isanewline
+\ 2.\ \isasymlbrakk (Q\ \isasymlongrightarrow \ P)\ \isasymlongrightarrow \ False;\ False\isasymrbrakk \ \isasymLongrightarrow \
+False
+\end{isabelle}
+Subgoal~2 holds trivially; let us ignore it and continue working on
+subgoal~1.  Thanks to the assumption~$P$, we could prove $Q\imp P$;
+applying \tdx{imp_impE} is simpler.
+\begin{isabelle}
+\ \isacommand{apply}\ (erule\ imp\_impE)\isanewline
+\ 1.\ \isasymlbrakk P;\ Q\ \isasymlongrightarrow \ False;\ Q;\ P\ \isasymlongrightarrow \ False\isasymrbrakk \ \isasymLongrightarrow \ P\isanewline
+\ 2.\ \isasymlbrakk P;\ Q\ \isasymlongrightarrow \ False;\ False\isasymrbrakk \ \isasymLongrightarrow \ Q\isanewline
+\ 3.\ \isasymlbrakk (Q\ \isasymlongrightarrow \ P)\ \isasymlongrightarrow \ False;\ False\isasymrbrakk \ \isasymLongrightarrow \ False%
+\end{isabelle}
+The three subgoals are all trivial.
+\begin{isabelle}
+\isacommand{apply}\ assumption\ \isanewline
+\ 1.\ \isasymlbrakk P;\ Q\ \isasymlongrightarrow \ False;\
+False\isasymrbrakk \ \isasymLongrightarrow \ Q\isanewline
+\ 2.\ \isasymlbrakk (Q\ \isasymlongrightarrow \ P)\
+\isasymlongrightarrow \ False;\ False\isasymrbrakk \
+\isasymLongrightarrow \ False%
+\isanewline
+\isacommand{apply}\ (erule\ FalseE)+\isanewline
+No\ subgoals!\isanewline
+\isacommand{done}
+\end{isabelle}
+This proof is also trivial for the \ML{} tactic \isa{IntPr.fast_tac}.
+
+
+\section{A classical example} \label{fol-cla-example}
+To illustrate classical logic, we shall prove the theorem
+$\ex{y}\all{x}P(y)\imp P(x)$.  Informally, the theorem can be proved as
+follows.  Choose~$y$ such that~$\neg P(y)$, if such exists; otherwise
+$\all{x}P(x)$ is true.  Either way the theorem holds.  First, we must
+work in a theory based on classical logic, the theory \isa{FOL}:
+\begin{isabelle}
+\isacommand{theory}\ FOL\_examples\ \isacommand{imports}\ FOL\isanewline
+\isacommand{begin}
+\end{isabelle}
+
+The formal proof does not conform in any obvious way to the sketch given
+above.  Its key step is its first rule, \tdx{exCI}, a classical
+version of~$(\exists I)$ that allows multiple instantiation of the
+quantifier.
+\begin{isabelle}
+\isacommand{lemma}\ "EX\ y.\ ALL\ x.\ P(y)-->P(x)"\isanewline
+\ 1.\ \isasymexists y.\ \isasymforall x.\ P(y)\ \isasymlongrightarrow \ P(x)
+\isanewline
+\isacommand{apply}\ (rule\ exCI)\isanewline
+\ 1.\ \isasymforall y.\ \isasymnot \ (\isasymforall x.\ P(y)\ \isasymlongrightarrow \ P(x))\ \isasymLongrightarrow \ \isasymforall x.\ P(?a)\ \isasymlongrightarrow \ P(x)
+\end{isabelle}
+We can either exhibit a term \isa{?a} to satisfy the conclusion of
+subgoal~1, or produce a contradiction from the assumption.  The next
+steps are routine.
+\begin{isabelle}
+\isacommand{apply}\ (rule\ allI)\isanewline
+\ 1.\ \isasymAnd x.\ \isasymforall y.\ \isasymnot \ (\isasymforall x.\ P(y)\ \isasymlongrightarrow \ P(x))\ \isasymLongrightarrow \ P(?a)\ \isasymlongrightarrow \ P(x)
+\isanewline
+\isacommand{apply}\ (rule\ impI)\isanewline
+\ 1.\ \isasymAnd x.\ \isasymlbrakk \isasymforall y.\ \isasymnot \ (\isasymforall x.\ P(y)\ \isasymlongrightarrow \ P(x));\ P(?a)\isasymrbrakk \ \isasymLongrightarrow \ P(x)
+\end{isabelle}
+By the duality between $\exists$ and~$\forall$, applying~$(\forall E)$
+is equivalent to applying~$(\exists I)$ again.
+\begin{isabelle}
+\isacommand{apply}\ (erule\ allE)\isanewline
+\ 1.\ \isasymAnd x.\ \isasymlbrakk P(?a);\ \isasymnot \ (\isasymforall xa.\ P(?y3(x))\ \isasymlongrightarrow \ P(xa))\isasymrbrakk \ \isasymLongrightarrow \ P(x)
+\end{isabelle}
+In classical logic, a negated assumption is equivalent to a conclusion.  To
+get this effect, we create a swapped version of $(\forall I)$ and apply it
+using \ttindex{erule}.
+\begin{isabelle}
+\isacommand{apply}\ (erule\ allI\ [THEN\ [2]\ swap])\isanewline
+\ 1.\ \isasymAnd x\ xa.\ \isasymlbrakk P(?a);\ \isasymnot \ P(x)\isasymrbrakk \ \isasymLongrightarrow \ P(?y3(x))\ \isasymlongrightarrow \ P(xa)
+\end{isabelle}
+The operand of \isa{erule} above denotes the following theorem:
+\begin{isabelle}
+\ \ \ \ \isasymlbrakk \isasymnot \ (\isasymforall x.\ ?P1(x));\
+\isasymAnd x.\ \isasymnot \ ?P\ \isasymLongrightarrow \
+?P1(x)\isasymrbrakk \
+\isasymLongrightarrow \ ?P%
+\end{isabelle}
+The previous conclusion, \isa{P(x)}, has become a negated assumption.
+\begin{isabelle}
+\isacommand{apply}\ (rule\ impI)\isanewline
+\ 1.\ \isasymAnd x\ xa.\ \isasymlbrakk P(?a);\ \isasymnot \ P(x);\ P(?y3(x))\isasymrbrakk \ \isasymLongrightarrow \ P(xa)
+\end{isabelle}
+The subgoal has three assumptions.  We produce a contradiction between the
+\index{assumptions!contradictory} assumptions~\isa{\isasymnot P(x)}
+and~\isa{P(?y3(x))}.   The proof never instantiates the
+unknown~\isa{?a}.
+\begin{isabelle}
+\isacommand{apply}\ (erule\ notE)\isanewline
+\ 1.\ \isasymAnd x\ xa.\ \isasymlbrakk P(?a);\ P(?y3(x))\isasymrbrakk \ \isasymLongrightarrow \ P(x)
+\isanewline
+\isacommand{apply}\ assumption\isanewline
+No\ subgoals!\isanewline
+\isacommand{done}
+\end{isabelle}
+The civilised way to prove this theorem is using the
+\methdx{blast} method, which automatically uses the classical form
+of the rule~$(\exists I)$:
+\begin{isabelle}
+\isacommand{lemma}\ "EX\ y.\ ALL\ x.\ P(y)-->P(x)"\isanewline
+\ 1.\ \isasymexists y.\ \isasymforall x.\ P(y)\ \isasymlongrightarrow \ P(x)
+\isanewline
+\isacommand{by}\ blast\isanewline
+No\ subgoals!
+\end{isabelle}
+If this theorem seems counterintuitive, then perhaps you are an
+intuitionist.  In constructive logic, proving $\ex{y}\all{x}P(y)\imp P(x)$
+requires exhibiting a particular term~$t$ such that $\all{x}P(t)\imp P(x)$,
+which we cannot do without further knowledge about~$P$.
+
+
+\section{Derived rules and the classical tactics}
+Classical first-order logic can be extended with the propositional
+connective $if(P,Q,R)$, where 
+$$ if(P,Q,R) \equiv P\conj Q \disj \neg P \conj R. \eqno(if) $$
+Theorems about $if$ can be proved by treating this as an abbreviation,
+replacing $if(P,Q,R)$ by $P\conj Q \disj \neg P \conj R$ in subgoals.  But
+this duplicates~$P$, causing an exponential blowup and an unreadable
+formula.  Introducing further abbreviations makes the problem worse.
+
+Natural deduction demands rules that introduce and eliminate $if(P,Q,R)$
+directly, without reference to its definition.  The simple identity
+\[ if(P,Q,R) \,\bimp\, (P\imp Q)\conj (\neg P\imp R) \]
+suggests that the
+$if$-introduction rule should be
+\[ \infer[({if}\,I)]{if(P,Q,R)}{\infer*{Q}{[P]}  &  \infer*{R}{[\neg P]}} \]
+The $if$-elimination rule reflects the definition of $if(P,Q,R)$ and the
+elimination rules for~$\disj$ and~$\conj$.
+\[ \infer[({if}\,E)]{S}{if(P,Q,R) & \infer*{S}{[P,Q]}
+                                  & \infer*{S}{[\neg P,R]}} 
+\]
+Having made these plans, we get down to work with Isabelle.  The theory of
+classical logic, \texttt{FOL}, is extended with the constant
+$if::[o,o,o]\To o$.  The axiom \tdx{if_def} asserts the
+equation~$(if)$.
+\begin{isabelle}
+\isacommand{theory}\ If\ \isacommand{imports}\ FOL\isanewline
+\isacommand{begin}\isanewline
+\isacommand{constdefs}\isanewline
+\ \ if\ ::\ "[o,o,o]=>o"\isanewline
+\ \ \ "if(P,Q,R)\ ==\ P\&Q\ |\ \isachartilde P\&R"
+\end{isabelle}
+We create the file \texttt{If.thy} containing these declarations.  (This file
+is on directory \texttt{FOL/ex} in the Isabelle distribution.)  Typing
+\begin{isabelle}
+use_thy "If";  
+\end{isabelle}
+loads that theory and sets it to be the current context.
+
+
+\subsection{Deriving the introduction rule}
+
+The derivations of the introduction and elimination rules demonstrate the
+methods for rewriting with definitions.  Classical reasoning is required,
+so we use \isa{blast}.
+
+The introduction rule, given the premises $P\Imp Q$ and $\neg P\Imp R$,
+concludes $if(P,Q,R)$.  We propose this lemma and immediately simplify
+using \isa{if\_def} to expand the definition of \isa{if} in the
+subgoal.
+\begin{isabelle}
+\isacommand{lemma}\ ifI: "[|\ P\ ==>\ Q;\ \isachartilde P\ ==>\ R\
+|]\ ==>\ if(P,Q,R)"\isanewline
+\ 1.\ \isasymlbrakk P\ \isasymLongrightarrow \ Q;\ \isasymnot \ P\ \isasymLongrightarrow \ R\isasymrbrakk \ \isasymLongrightarrow \ if(P,\ Q,\ R)
+\isanewline
+\isacommand{apply}\ (simp\ add:\ if\_def)\isanewline
+\ 1.\ \isasymlbrakk P\ \isasymLongrightarrow \ Q;\ \isasymnot \ P\ \isasymLongrightarrow \ R\isasymrbrakk \ \isasymLongrightarrow \ P\ \isasymand \ Q\ \isasymor \ \isasymnot \ P\ \isasymand \
+R
+\end{isabelle}
+The rule's premises, although expressed using meta-level implication
+(\isa{\isasymLongrightarrow}) are passed as ordinary implications to
+\methdx{blast}.  
+\begin{isabelle}
+\isacommand{apply}\ blast\isanewline
+No\ subgoals!\isanewline
+\isacommand{done}
+\end{isabelle}
+
+
+\subsection{Deriving the elimination rule}
+The elimination rule has three premises, two of which are themselves rules.
+The conclusion is simply $S$.
+\begin{isabelle}
+\isacommand{lemma}\ ifE:\isanewline
+\ \ \ "[|\ if(P,Q,R);\ \ [|P;\ Q|]\ ==>\ S;\ [|\isachartilde P;\ R|]\ ==>\ S\ |]\ ==>\ S"\isanewline
+\ 1.\ \isasymlbrakk if(P,\ Q,\ R);\ \isasymlbrakk P;\ Q\isasymrbrakk \ \isasymLongrightarrow \ S;\ \isasymlbrakk \isasymnot \ P;\ R\isasymrbrakk \ \isasymLongrightarrow \ S\isasymrbrakk \ \isasymLongrightarrow \ S%
+\isanewline
+\isacommand{apply}\ (simp\ add:\ if\_def)\isanewline
+\ 1.\ \isasymlbrakk P\ \isasymand \ Q\ \isasymor \ \isasymnot \ P\ \isasymand \ R;\ \isasymlbrakk P;\ Q\isasymrbrakk \ \isasymLongrightarrow \ S;\ \isasymlbrakk \isasymnot \ P;\ R\isasymrbrakk \ \isasymLongrightarrow \ S\isasymrbrakk \ \isasymLongrightarrow \ S%
+\end{isabelle}
+The proof script is the same as before: \isa{simp} followed by
+\isa{blast}:
+\begin{isabelle}
+\isacommand{apply}\ blast\isanewline
+No\ subgoals!\isanewline
+\isacommand{done}
+\end{isabelle}
+
+
+\subsection{Using the derived rules}
+Our new derived rules, \tdx{ifI} and~\tdx{ifE}, permit natural
+proofs of theorems such as the following:
+\begin{eqnarray*}
+    if(P, if(Q,A,B), if(Q,C,D)) & \bimp & if(Q,if(P,A,C),if(P,B,D)) \\
+    if(if(P,Q,R), A, B)         & \bimp & if(P,if(Q,A,B),if(R,A,B))
+\end{eqnarray*}
+Proofs also require the classical reasoning rules and the $\bimp$
+introduction rule (called~\tdx{iffI}: do not confuse with~\isa{ifI}). 
+
+To display the $if$-rules in action, let us analyse a proof step by step.
+\begin{isabelle}
+\isacommand{lemma}\ if\_commute:\isanewline
+\ \ \ \ \ "if(P,\ if(Q,A,B),\
+if(Q,C,D))\ <->\ if(Q,\ if(P,A,C),\ if(P,B,D))"\isanewline
+\isacommand{apply}\ (rule\ iffI)\isanewline
+\ 1.\ if(P,\ if(Q,\ A,\ B),\ if(Q,\ C,\ D))\ \isasymLongrightarrow \isanewline
+\isaindent{\ 1.\ }if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 2.\ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\ \isasymLongrightarrow \isanewline
+\isaindent{\ 2.\ }if(P,\ if(Q,\ A,\ B),\ if(Q,\ C,\ D))
+\end{isabelle}
+The $if$-elimination rule can be applied twice in succession.
+\begin{isabelle}
+\isacommand{apply}\ (erule\ ifE)\isanewline
+\ 1.\ \isasymlbrakk P;\ if(Q,\ A,\ B)\isasymrbrakk \ \isasymLongrightarrow \ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 2.\ \isasymlbrakk \isasymnot \ P;\ if(Q,\ C,\ D)\isasymrbrakk \ \isasymLongrightarrow \ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 3.\ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\ \isasymLongrightarrow \isanewline
+\isaindent{\ 3.\ }if(P,\ if(Q,\ A,\ B),\ if(Q,\ C,\ D))
+\isanewline
+\isacommand{apply}\ (erule\ ifE)\isanewline
+\ 1.\ \isasymlbrakk P;\ Q;\ A\isasymrbrakk \ \isasymLongrightarrow \ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 2.\ \isasymlbrakk P;\ \isasymnot \ Q;\ B\isasymrbrakk \ \isasymLongrightarrow \ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 3.\ \isasymlbrakk \isasymnot \ P;\ if(Q,\ C,\ D)\isasymrbrakk \ \isasymLongrightarrow \ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 4.\ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\ \isasymLongrightarrow \isanewline
+\isaindent{\ 4.\ }if(P,\ if(Q,\ A,\ B),\ if(Q,\ C,\ D))
+\end{isabelle}
+%
+In the first two subgoals, all assumptions have been reduced to atoms.  Now
+$if$-introduction can be applied.  Observe how the $if$-rules break down
+occurrences of $if$ when they become the outermost connective.
+\begin{isabelle}
+\isacommand{apply}\ (rule\ ifI)\isanewline
+\ 1.\ \isasymlbrakk P;\ Q;\ A;\ Q\isasymrbrakk \ \isasymLongrightarrow \ if(P,\ A,\ C)\isanewline
+\ 2.\ \isasymlbrakk P;\ Q;\ A;\ \isasymnot \ Q\isasymrbrakk \ \isasymLongrightarrow \ if(P,\ B,\ D)\isanewline
+\ 3.\ \isasymlbrakk P;\ \isasymnot \ Q;\ B\isasymrbrakk \ \isasymLongrightarrow \ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 4.\ \isasymlbrakk \isasymnot \ P;\ if(Q,\ C,\ D)\isasymrbrakk \ \isasymLongrightarrow \ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 5.\ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\ \isasymLongrightarrow \isanewline
+\isaindent{\ 5.\ }if(P,\ if(Q,\ A,\ B),\ if(Q,\ C,\ D))
+\isanewline
+\isacommand{apply}\ (rule\ ifI)\isanewline
+\ 1.\ \isasymlbrakk P;\ Q;\ A;\ Q;\ P\isasymrbrakk \ \isasymLongrightarrow \ A\isanewline
+\ 2.\ \isasymlbrakk P;\ Q;\ A;\ Q;\ \isasymnot \ P\isasymrbrakk \ \isasymLongrightarrow \ C\isanewline
+\ 3.\ \isasymlbrakk P;\ Q;\ A;\ \isasymnot \ Q\isasymrbrakk \ \isasymLongrightarrow \ if(P,\ B,\ D)\isanewline
+\ 4.\ \isasymlbrakk P;\ \isasymnot \ Q;\ B\isasymrbrakk \ \isasymLongrightarrow \ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 5.\ \isasymlbrakk \isasymnot \ P;\ if(Q,\ C,\ D)\isasymrbrakk \ \isasymLongrightarrow \ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\isanewline
+\ 6.\ if(Q,\ if(P,\ A,\ C),\ if(P,\ B,\ D))\ \isasymLongrightarrow \isanewline
+\isaindent{\ 6.\ }if(P,\ if(Q,\ A,\ B),\ if(Q,\ C,\ D))
+\end{isabelle}
+Where do we stand?  The first subgoal holds by assumption; the second and
+third, by contradiction.  This is getting tedious.  We could use the classical
+reasoner, but first let us extend the default claset with the derived rules
+for~$if$.
+\begin{isabelle}
+\isacommand{declare}\ ifI\ [intro!]\isanewline
+\isacommand{declare}\ ifE\ [elim!]
+\end{isabelle}
+With these declarations, we could have proved this theorem with a single
+call to \isa{blast}.  Here is another example:
+\begin{isabelle}
+\isacommand{lemma}\ "if(if(P,Q,R),\ A,\ B)\ <->\ if(P,\ if(Q,A,B),\ if(R,A,B))"\isanewline
+\ 1.\ if(if(P,\ Q,\ R),\ A,\ B)\ \isasymlongleftrightarrow \ if(P,\ if(Q,\ A,\ B),\ if(R,\ A,\ B))
+\isanewline
+\isacommand{by}\ blast
+\end{isabelle}
+
+
+\subsection{Derived rules versus definitions}
+Dispensing with the derived rules, we can treat $if$ as an
+abbreviation, and let \ttindex{blast_tac} prove the expanded formula.  Let
+us redo the previous proof:
+\begin{isabelle}
+\isacommand{lemma}\ "if(if(P,Q,R),\ A,\ B)\ <->\ if(P,\ if(Q,A,B),\ if(R,A,B))"\isanewline
+\ 1.\ if(if(P,\ Q,\ R),\ A,\ B)\ \isasymlongleftrightarrow \ if(P,\ if(Q,\ A,\ B),\ if(R,\ A,\ B))
+\end{isabelle}
+This time, we simply unfold using the definition of $if$:
+\begin{isabelle}
+\isacommand{apply}\ (simp\ add:\ if\_def)\isanewline
+\ 1.\ (P\ \isasymand \ Q\ \isasymor \ \isasymnot \ P\ \isasymand \ R)\ \isasymand \ A\ \isasymor \ (\isasymnot \ P\ \isasymor \ \isasymnot \ Q)\ \isasymand \ (P\ \isasymor \ \isasymnot \ R)\ \isasymand \ B\ \isasymlongleftrightarrow \isanewline
+\isaindent{\ 1.\ }P\ \isasymand \ (Q\ \isasymand \ A\ \isasymor \ \isasymnot \ Q\ \isasymand \ B)\ \isasymor \ \isasymnot \ P\ \isasymand \ (R\ \isasymand \ A\ \isasymor \ \isasymnot \ R\ \isasymand \ B)
+\end{isabelle}
+We are left with a subgoal in pure first-order logic, and it falls to
+\isa{blast}:
+\begin{isabelle}
+\isacommand{apply}\ blast\isanewline
+No\ subgoals!
+\end{isabelle}
+Expanding definitions reduces the extended logic to the base logic.  This
+approach has its merits, but it can be slow.  In these examples, proofs
+using the derived rules for~\isa{if} run about six
+times faster  than proofs using just the rules of first-order logic.
+
+Expanding definitions can also make it harder to diagnose errors. 
+Suppose we are having difficulties in proving some goal.  If by expanding
+definitions we have made it unreadable, then we have little hope of
+diagnosing the problem.
+
+Attempts at program verification often yield invalid assertions.
+Let us try to prove one:
+\begin{isabelle}
+\isacommand{lemma}\ "if(if(P,Q,R),\ A,\ B)\ <->\ if(P,\ if(Q,A,B),\ if(R,B,A))"\isanewline
+\ 1.\ if(if(P,\ Q,\ R),\ A,\ B)\ \isasymlongleftrightarrow \ if(P,\ if(Q,\ A,\ B),\ if(R,\ B,\
+A))
+\end{isabelle}
+Calling \isa{blast} yields an uninformative failure message. We can
+get a closer look at the situation by applying \methdx{auto}.
+\begin{isabelle}
+\isacommand{apply}\ auto\isanewline
+\ 1.\ \isasymlbrakk A;\ \isasymnot \ P;\ R\isasymrbrakk \ \isasymLongrightarrow \ B\isanewline
+\ 2.\ \isasymlbrakk B;\ \isasymnot \ P;\ \isasymnot \ R\isasymrbrakk \ \isasymLongrightarrow \ A\isanewline
+\ 3.\ \isasymlbrakk B;\ \isasymnot \ P;\ R\isasymrbrakk \ \isasymLongrightarrow \ A\isanewline
+\ 4.\ \isasymlbrakk \isasymnot \ R;\ A;\ \isasymnot \ B;\ \isasymnot \ P\isasymrbrakk \ \isasymLongrightarrow \
+False
+\end{isabelle}
+Subgoal~1 is unprovable and yields a countermodel: $P$ and~$B$ are false
+while~$R$ and~$A$ are true.  This truth assignment reduces the main goal to
+$true\bimp false$, which is of course invalid.
+
+We can repeat this analysis by expanding definitions, using just the rules of
+first-order logic:
+\begin{isabelle}
+\isacommand{lemma}\ "if(if(P,Q,R),\ A,\ B)\ <->\ if(P,\ if(Q,A,B),\ if(R,B,A))"\isanewline
+\ 1.\ if(if(P,\ Q,\ R),\ A,\ B)\ \isasymlongleftrightarrow \ if(P,\ if(Q,\ A,\ B),\ if(R,\ B,\
+A))
+\isanewline
+\isacommand{apply}\ (simp\ add:\ if\_def)\isanewline
+\ 1.\ (P\ \isasymand \ Q\ \isasymor \ \isasymnot \ P\ \isasymand \ R)\ \isasymand \ A\ \isasymor \ (\isasymnot \ P\ \isasymor \ \isasymnot \ Q)\ \isasymand \ (P\ \isasymor \ \isasymnot \ R)\ \isasymand \ B\ \isasymlongleftrightarrow \isanewline
+\isaindent{\ 1.\ }P\ \isasymand \ (Q\ \isasymand \ A\ \isasymor \ \isasymnot \ Q\ \isasymand \ B)\ \isasymor \ \isasymnot \ P\ \isasymand \ (R\ \isasymand \ B\ \isasymor \ \isasymnot \ R\ \isasymand \ A)
+\end{isabelle}
+Again \isa{blast} would fail, so we try \methdx{auto}:
+\begin{isabelle}
+\isacommand{apply}\ (auto)\ \isanewline
+\ 1.\ \isasymlbrakk A;\ \isasymnot \ P;\ R\isasymrbrakk \ \isasymLongrightarrow \ B\isanewline
+\ 2.\ \isasymlbrakk A;\ \isasymnot \ P;\ R;\ \isasymnot \ B\isasymrbrakk \ \isasymLongrightarrow \ Q\isanewline
+\ 3.\ \isasymlbrakk B;\ \isasymnot \ R;\ \isasymnot \ P;\ \isasymnot \ A\isasymrbrakk \ \isasymLongrightarrow \ False\isanewline
+\ 4.\ \isasymlbrakk B;\ \isasymnot \ P;\ \isasymnot \ A;\ \isasymnot \ R;\ Q\isasymrbrakk \ \isasymLongrightarrow \ False\isanewline
+\ 5.\ \isasymlbrakk B;\ \isasymnot \ Q;\ \isasymnot \ R;\ \isasymnot \ P;\ \isasymnot \ A\isasymrbrakk \ \isasymLongrightarrow \ False\isanewline
+\ 6.\ \isasymlbrakk B;\ \isasymnot \ A;\ \isasymnot \ P;\ R\isasymrbrakk \ \isasymLongrightarrow \ False\isanewline
+\ 7.\ \isasymlbrakk \isasymnot \ P;\ A;\ \isasymnot \ B;\ \isasymnot \ R\isasymrbrakk \ \isasymLongrightarrow \ False\isanewline
+\ 8.\ \isasymlbrakk \isasymnot \ P;\ A;\ \isasymnot \ B;\ \isasymnot \ R\isasymrbrakk \ \isasymLongrightarrow \ Q%
+\end{isabelle}
+Subgoal~1 yields the same countermodel as before.  But each proof step has
+taken six times as long, and the final result contains twice as many subgoals.
+
+Expanding your definitions usually makes proofs more difficult.  This is
+why the classical prover has been designed to accept derived rules.
+
+\index{first-order logic|)}