src/HOL/Library/Primes.thy
changeset 16762 aafd23b47a5d
parent 16663 13e9c402308b
child 19086 1b3780be6cc2
--- a/src/HOL/Library/Primes.thy	Fri Jul 08 11:38:53 2005 +0200
+++ b/src/HOL/Library/Primes.thy	Fri Jul 08 11:39:08 2005 +0200
@@ -4,28 +4,13 @@
     Copyright   1996  University of Cambridge
 *)
 
-header {* The Greatest Common Divisor and Euclid's algorithm *}
+header {* Primality on nat *}
 
 theory Primes
 imports Main
 begin
 
-text {*
-  See \cite{davenport92}.
-  \bigskip
-*}
-
-consts
-  gcd  :: "nat \<times> nat => nat"  -- {* Euclid's algorithm *}
-
-recdef gcd  "measure ((\<lambda>(m, n). n) :: nat \<times> nat => nat)"
-  "gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
-
 constdefs
-  is_gcd :: "nat => nat => nat => bool"  -- {* @{term gcd} as a relation *}
-  "is_gcd p m n == p dvd m \<and> p dvd n \<and>
-    (\<forall>d. d dvd m \<and> d dvd n --> d dvd p)"
-
   coprime :: "nat => nat => bool"
   "coprime m n == gcd (m, n) = 1"
 
@@ -33,143 +18,10 @@
   "prime p == 1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p)"
 
 
-lemma gcd_induct:
-  "(!!m. P m 0) ==>
-    (!!m n. 0 < n ==> P n (m mod n) ==> P m n)
-  ==> P (m::nat) (n::nat)"
-  apply (induct m n rule: gcd.induct)
-  apply (case_tac "n = 0")
-   apply simp_all
-  done
-
-
-lemma gcd_0 [simp]: "gcd (m, 0) = m"
-  apply simp
-  done
-
-lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
-  apply simp
-  done
-
-declare gcd.simps [simp del]
-
-lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1"
-  apply (simp add: gcd_non_0)
-  done
-
-text {*
-  \medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}.  The
-  conjunctions don't seem provable separately.
-*}
-
-lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m"
-  and gcd_dvd2 [iff]: "gcd (m, n) dvd n"
-  apply (induct m n rule: gcd_induct)
-   apply (simp_all add: gcd_non_0)
-  apply (blast dest: dvd_mod_imp_dvd)
-  done
-
-text {*
-  \medskip Maximality: for all @{term m}, @{term n}, @{term k}
-  naturals, if @{term k} divides @{term m} and @{term k} divides
-  @{term n} then @{term k} divides @{term "gcd (m, n)"}.
-*}
-
-lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
-  apply (induct m n rule: gcd_induct)
-   apply (simp_all add: gcd_non_0 dvd_mod)
-  done
-
-lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)"
-  apply (blast intro!: gcd_greatest intro: dvd_trans)
-  done
-
-lemma gcd_zero: "(gcd (m, n) = 0) = (m = 0 \<and> n = 0)"
-  by (simp only: dvd_0_left_iff [THEN sym] gcd_greatest_iff)
-
-
-text {*
-  \medskip Function gcd yields the Greatest Common Divisor.
-*}
-
-lemma is_gcd: "is_gcd (gcd (m, n)) m n"
-  apply (simp add: is_gcd_def gcd_greatest)
-  done
-
-text {*
-  \medskip Uniqueness of GCDs.
-*}
-
-lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
-  apply (simp add: is_gcd_def)
-  apply (blast intro: dvd_anti_sym)
-  done
-
-lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
-  apply (auto simp add: is_gcd_def)
-  done
-
-
-text {*
-  \medskip Commutativity
-*}
-
-lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
-  apply (auto simp add: is_gcd_def)
-  done
-
-lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (subst is_gcd_commute)
-  apply (simp add: is_gcd)
-  done
-
-lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (simp add: is_gcd_def)
-  apply (blast intro: dvd_trans)
-  done
-
-lemma gcd_0_left [simp]: "gcd (0, m) = m"
-  apply (simp add: gcd_commute [of 0])
-  done
-
-lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1"
-  apply (simp add: gcd_commute [of "Suc 0"])
-  done
-
-
-text {*
-  \medskip Multiplication laws
-*}
-
-lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
-    -- {* \cite[page 27]{davenport92} *}
-  apply (induct m n rule: gcd_induct)
-   apply simp
-  apply (case_tac "k = 0")
-   apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
-  done
-
-lemma gcd_mult [simp]: "gcd (k, k * n) = k"
-  apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
-  done
-
-lemma gcd_self [simp]: "gcd (k, k) = k"
-  apply (rule gcd_mult [of k 1, simplified])
-  done
-
-lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
-  apply (insert gcd_mult_distrib2 [of m k n])
-  apply simp
-  apply (erule_tac t = m in ssubst)
-  apply simp
-  done
-
-lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
-  apply (blast intro: relprime_dvd_mult dvd_trans)
+lemma two_is_prime: "prime 2"
+  apply (auto simp add: prime_def)
+  apply (case_tac m)
+   apply (auto dest!: dvd_imp_le)
   done
 
 lemma prime_imp_relprime: "prime p ==> \<not> p dvd n ==> gcd (p, n) = 1"
@@ -180,12 +32,6 @@
   apply simp
   done
 
-lemma two_is_prime: "prime 2"
-  apply (auto simp add: prime_def)
-  apply (case_tac m)
-   apply (auto dest!: dvd_imp_le)
-  done
-
 text {*
   This theorem leads immediately to a proof of the uniqueness of
   factorization.  If @{term p} divides a product of primes then it is
@@ -202,43 +48,4 @@
   by (rule prime_dvd_square) (simp_all add: power2_eq_square)
 
 
-text {* \medskip Addition laws *}
-
-lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
-  apply (case_tac "n = 0")
-   apply (simp_all add: gcd_non_0)
-  done
-
-lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
-proof -
-  have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute) 
-  also have "... = gcd (n + m, m)" by (simp add: add_commute)
-  also have "... = gcd (n, m)" by simp
-  also have  "... = gcd (m, n)" by (rule gcd_commute) 
-  finally show ?thesis .
-qed
-
-lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
-  apply (subst add_commute)
-  apply (rule gcd_add2)
-  done
-
-lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
-  apply (induct k)
-   apply (simp_all add: add_assoc)
-  done
-
-
-text {* \medskip More multiplication laws *}
-
-lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
-  apply (rule dvd_anti_sym)
-   apply (rule gcd_greatest)
-    apply (rule_tac n = k in relprime_dvd_mult)
-     apply (simp add: gcd_assoc)
-     apply (simp add: gcd_commute)
-    apply (simp_all add: mult_commute)
-  apply (blast intro: dvd_trans)
-  done
-
 end