src/HOL/NanoJava/Example.thy
changeset 11565 ab004c0ecc63
child 11772 cf618fe8facd
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/NanoJava/Example.thy	Fri Sep 21 18:23:15 2001 +0200
@@ -0,0 +1,208 @@
+(*  Title:      HOL/NanoJava/Example.thy
+    ID:         $Id$
+    Author:     David von Oheimb
+    Copyright   2001 Technische Universitaet Muenchen
+*)
+
+header "Example"
+
+theory Example = Equivalence:
+
+text {*
+
+\begin{verbatim}
+class Nat {
+
+  Nat pred;
+
+  Nat suc() 
+    { Nat n = new Nat(); n.pred = this; return n; }
+
+  Nat eq(Nat n)
+    { if (this.pred != null) if (n.pred != null) return this.pred.eq(n.pred);
+                             else return n.pred; // false
+      else if (n.pred != null) return this.pred; // false
+           else return this.suc(); // true
+    }
+
+  Nat add(Nat n)
+    { if (this.pred != null) return this.pred.add(n.suc()); else return n; }
+
+  public static void main(String[] args) // test x+1=1+x
+    {
+	Nat one = new Nat().suc();
+	Nat x   = new Nat().suc().suc().suc().suc();
+	Nat ok = x.suc().eq(x.add(one));
+        System.out.println(ok != null);
+    }
+}
+\end{verbatim}
+
+*}
+
+axioms This_neq_Par [simp]: "This \<noteq> Par"
+       Res_neq_This [simp]: "Res  \<noteq> This"
+
+
+subsection "Program representation"
+
+consts N    :: cname ("Nat") (* with mixfix because of clash with NatDef.Nat *)
+consts pred :: fname
+consts suc  :: mname
+       add  :: mname
+consts any  :: vname
+syntax dummy:: expr ("<>")
+       one  :: expr
+translations 
+      "<>"  == "LAcc any"
+      "one" == "{Nat}new Nat..suc(<>)"
+
+text {* The following properties could be derived from a more complete
+        program model, which we leave out for laziness. *}
+
+axioms Nat_no_subclasses [simp]: "D \<preceq>C Nat = (D=Nat)"
+
+axioms method_Nat_add [simp]: "method Nat add = Some 
+  \<lparr> par=Class Nat, res=Class Nat, lcl=[], 
+   bdy= If((LAcc This..pred)) 
+          (Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>))) 
+        Else Res :== LAcc Par \<rparr>"
+
+axioms method_Nat_suc [simp]: "method Nat suc = Some 
+  \<lparr> par=NT, res=Class Nat, lcl=[], 
+   bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This \<rparr>"
+
+axioms field_Nat [simp]: "field Nat = empty(pred\<mapsto>Class Nat)"
+
+lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s"
+by (simp add: init_locs_def init_vars_def)
+
+lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s"
+by (simp add: init_locs_def init_vars_def)
+
+lemma upd_obj_new_obj_Nat [simp]: 
+  "upd_obj a pred v (new_obj a Nat s) = hupd(a\<mapsto>(Nat, empty(pred\<mapsto>v))) s"
+by (simp add: new_obj_def init_vars_def upd_obj_def Let_def)
+
+
+subsection "``atleast'' relation for interpretation of Nat ``values''"
+
+consts Nat_atleast :: "state \<Rightarrow> val \<Rightarrow> nat \<Rightarrow> bool" ("_:_ \<ge> _" [51, 51, 51] 50)
+primrec "s:x\<ge>0     = (x\<noteq>Null)"
+        "s:x\<ge>Suc n = (\<exists>a. x=Addr a \<and> heap s a \<noteq> None \<and> s:get_field s a pred\<ge>n)"
+
+lemma Nat_atleast_lupd [rule_format, simp]: 
+ "\<forall>s v. lupd(x\<mapsto>y) s:v \<ge> n = (s:v \<ge> n)"
+apply (induct n)
+by  auto
+
+lemma Nat_atleast_set_locs [rule_format, simp]: 
+ "\<forall>s v. set_locs l s:v \<ge> n = (s:v \<ge> n)"
+apply (induct n)
+by auto
+
+lemma Nat_atleast_reset_locs [rule_format, simp]: 
+ "\<forall>s v. reset_locs s:v \<ge> n = (s:v \<ge> n)"
+apply (induct n)
+by auto
+
+lemma Nat_atleast_NullD [rule_format]: "s:Null \<ge> n \<longrightarrow> False"
+apply (induct n)
+by auto
+
+lemma Nat_atleast_pred_NullD [rule_format]: 
+"Null = get_field s a pred \<Longrightarrow> s:Addr a \<ge> n \<longrightarrow> n = 0"
+apply (induct n)
+by (auto dest: Nat_atleast_NullD)
+
+lemma Nat_atleast_mono [rule_format]: 
+"\<forall>a. s:get_field s a pred \<ge> n \<longrightarrow> heap s a \<noteq> None \<longrightarrow> s:Addr a \<ge> n"
+apply (induct n)
+by auto
+
+lemma Nat_atleast_newC [rule_format]: 
+  "heap s aa = None \<Longrightarrow> \<forall>v. s:v \<ge> n \<longrightarrow> hupd(aa\<mapsto>obj) s:v \<ge> n"
+apply (induct n)
+apply  auto
+apply  (case_tac "aa=a")
+apply   auto
+apply (tactic "smp_tac 1 1")
+apply (case_tac "aa=a")
+apply  auto
+done
+
+
+subsection "Proof(s) using the Hoare logic"
+
+theorem add_triang: 
+  "{} \<turnstile> {\<lambda>s. s:s<This> \<ge> X \<and> s:s<Par> \<ge> Y} Meth(Nat,add) {\<lambda>s. s:s<Res> \<ge> X+Y}"
+apply (rule hoare_ehoare.Meth)
+apply clarsimp
+apply (rule_tac P'= "\<lambda>Z s. (s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z) \<and> D=Nat" and 
+                Q'= "\<lambda>Z s. s:s<Res> \<ge> fst Z+snd Z" in Conseq)
+prefer 2
+apply  (clarsimp simp add: init_locs_def init_vars_def)
+apply rule
+apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
+apply (rule_tac P = "\<lambda>Z Cm s. s:s<This> \<ge> fst Z \<and> s:s<Par> \<ge> snd Z" in Impl1)
+apply (clarsimp simp add: body_def)
+apply (rename_tac n m)
+apply (rule_tac Q = "\<lambda>v s. (s:s<This> \<ge> n \<and> s:s<Par> \<ge> m) \<and> 
+        (\<exists>a. s<This> = Addr a \<and> v = get_field s a pred)" in hoare_ehoare.Cond)
+apply  (rule hoare_ehoare.FAcc)
+apply  (rule eConseq1)
+apply   (rule hoare_ehoare.LAcc)
+apply  fast
+apply auto
+prefer 2
+apply  (rule hoare_ehoare.LAss)
+apply  (rule eConseq1)
+apply   (rule hoare_ehoare.LAcc)
+apply  (auto dest: Nat_atleast_pred_NullD)
+apply (rule hoare_ehoare.LAss)
+apply (rule_tac 
+    Q = "\<lambda>v   s. (\<forall>m. n = Suc m \<longrightarrow> s:v \<ge> m) \<and> s:s<Par> \<ge> m" and 
+    R = "\<lambda>T P s. (\<forall>m. n = Suc m \<longrightarrow> s:T \<ge> m) \<and> s:P  \<ge> Suc m" 
+    in hoare_ehoare.Call)
+apply   (rule hoare_ehoare.FAcc)
+apply   (rule eConseq1)
+apply    (rule hoare_ehoare.LAcc)
+apply   clarify
+apply   (drule sym, rotate_tac -1, frule (1) trans)
+apply   simp
+prefer 2
+apply  clarsimp
+apply  (rule hoare_ehoare.Meth)
+apply  clarsimp
+apply  (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
+apply  (rule Conseq)
+apply   rule
+apply   (rule hoare_ehoare.Asm)
+apply   (rule_tac a = "((case n of 0 \<Rightarrow> 0 | Suc m \<Rightarrow> m),m+1)" in UN_I, rule+)
+apply  (clarsimp split add: nat.split_asm dest!: Nat_atleast_mono)
+apply rule
+apply (rule hoare_ehoare.Call)
+apply   (rule hoare_ehoare.LAcc)
+apply  rule
+apply  (rule hoare_ehoare.LAcc)
+apply clarify
+apply (rule hoare_ehoare.Meth)
+apply clarsimp
+apply  (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
+apply (rule Impl1)
+apply (clarsimp simp add: body_def)
+apply (rule hoare_ehoare.Comp)
+prefer 2
+apply  (rule hoare_ehoare.FAss)
+prefer 2
+apply   rule
+apply   (rule hoare_ehoare.LAcc)
+apply  (rule hoare_ehoare.LAcc)
+apply (rule hoare_ehoare.LAss)
+apply (rule eConseq1)
+apply  (rule hoare_ehoare.NewC)
+apply (auto dest!: new_AddrD elim: Nat_atleast_newC)
+done
+
+
+end