src/HOL/UNITY/Lift_prog.thy
changeset 13786 ab8f39f48a6f
parent 11701 3d51fbf81c17
child 13790 8d7e9fce8c50
--- a/src/HOL/UNITY/Lift_prog.thy	Fri Jan 24 14:06:49 2003 +0100
+++ b/src/HOL/UNITY/Lift_prog.thy	Fri Jan 24 18:13:59 2003 +0100
@@ -3,10 +3,10 @@
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1999  University of Cambridge
 
-lift_prog, etc: replication of components
+lift_prog, etc: replication of components and arrays of processes. 
 *)
 
-Lift_prog = Rename +
+theory Lift_prog = Rename:
 
 constdefs
 
@@ -31,9 +31,458 @@
     "lift i == rename (lift_map i)"
 
   (*simplifies the expression of specifications*)
-  constdefs
-    sub :: ['a, 'a=>'b] => 'b
-      "sub == %i f. f i"
+  sub :: "['a, 'a=>'b] => 'b"
+    "sub == %i f. f i"
+
+
+declare insert_map_def [simp] delete_map_def [simp]
+
+lemma insert_map_inverse: "delete_map i (insert_map i x f) = f"
+apply (rule ext)
+apply (simp (no_asm))
+done
+
+lemma insert_map_delete_map_eq: "(insert_map i x (delete_map i g)) = g(i:=x)"
+apply (rule ext)
+apply (auto split add: nat_diff_split)
+done
+
+(*** Injectiveness proof ***)
+
+lemma insert_map_inject1: "(insert_map i x f) = (insert_map i y g) ==> x=y"
+apply (drule_tac x = i in fun_cong)
+apply (simp (no_asm_use))
+done
+
+lemma insert_map_inject2: "(insert_map i x f) = (insert_map i y g) ==> f=g"
+apply (drule_tac f = "delete_map i" in arg_cong)
+apply (simp (no_asm_use) add: insert_map_inverse)
+done
+
+lemma insert_map_inject':
+     "(insert_map i x f) = (insert_map i y g) ==> x=y & f=g"
+by (blast dest: insert_map_inject1 insert_map_inject2)
+
+lemmas insert_map_inject = insert_map_inject' [THEN conjE, elim!]
+
+(*The general case: we don't assume i=i'*)
+lemma lift_map_eq_iff [iff]: 
+     "(lift_map i (s,(f,uu)) = lift_map i' (s',(f',uu')))  
+      = (uu = uu' & insert_map i s f = insert_map i' s' f')"
+apply (unfold lift_map_def, auto)
+done
+
+(*The !!s allows the automatic splitting of the bound variable*)
+lemma drop_map_lift_map_eq [simp]: "!!s. drop_map i (lift_map i s) = s"
+apply (unfold lift_map_def drop_map_def)
+apply (force intro: insert_map_inverse)
+done
+
+lemma inj_lift_map: "inj (lift_map i)"
+apply (unfold lift_map_def)
+apply (rule inj_onI, auto)
+done
+
+(*** Surjectiveness proof ***)
+
+lemma lift_map_drop_map_eq [simp]: "!!s. lift_map i (drop_map i s) = s"
+apply (unfold lift_map_def drop_map_def)
+apply (force simp add: insert_map_delete_map_eq)
+done
+
+lemma drop_map_inject [dest!]: "(drop_map i s) = (drop_map i s') ==> s=s'"
+apply (drule_tac f = "lift_map i" in arg_cong)
+apply (simp (no_asm_use))
+done
+
+lemma surj_lift_map: "surj (lift_map i)"
+apply (rule surjI)
+apply (rule lift_map_drop_map_eq)
+done
+
+lemma bij_lift_map [iff]: "bij (lift_map i)"
+apply (simp (no_asm) add: bij_def inj_lift_map surj_lift_map)
+done
+
+lemma inv_lift_map_eq [simp]: "inv (lift_map i) = drop_map i"
+by (rule inv_equality, auto)
+
+lemma inv_drop_map_eq [simp]: "inv (drop_map i) = lift_map i"
+by (rule inv_equality, auto)
+
+lemma bij_drop_map [iff]: "bij (drop_map i)"
+by (simp del: inv_lift_map_eq add: inv_lift_map_eq [symmetric] bij_imp_bij_inv)
+
+(*sub's main property!*)
+lemma sub_apply [simp]: "sub i f = f i"
+apply (simp (no_asm) add: sub_def)
+done
+
+(*** lift_set ***)
+
+lemma lift_set_empty [simp]: "lift_set i {} = {}"
+by (unfold lift_set_def, auto)
+
+lemma lift_set_iff: "(lift_map i x : lift_set i A) = (x : A)"
+apply (unfold lift_set_def)
+apply (rule inj_lift_map [THEN inj_image_mem_iff])
+done
+
+(*Do we really need both this one and its predecessor?*)
+lemma lift_set_iff2 [iff]:
+     "((f,uu) : lift_set i A) = ((f i, (delete_map i f, uu)) : A)"
+by (simp (no_asm_simp) add: lift_set_def mem_rename_set_iff drop_map_def)
+
+
+lemma lift_set_mono: "A<=B ==> lift_set i A <= lift_set i B"
+apply (unfold lift_set_def)
+apply (erule image_mono)
+done
+
+lemma lift_set_Un_distrib: "lift_set i (A Un B) = lift_set i A Un lift_set i B"
+apply (unfold lift_set_def)
+apply (simp (no_asm_simp) add: image_Un)
+done
+
+lemma lift_set_Diff_distrib: "lift_set i (A-B) = lift_set i A - lift_set i B"
+apply (unfold lift_set_def)
+apply (rule inj_lift_map [THEN image_set_diff])
+done
+
+
+(*** the lattice operations ***)
+
+lemma bij_lift [iff]: "bij (lift i)"
+apply (simp (no_asm) add: lift_def)
+done
+
+lemma lift_SKIP [simp]: "lift i SKIP = SKIP"
+apply (unfold lift_def)
+apply (simp (no_asm_simp))
+done
+
+lemma lift_Join [simp]: "lift i (F Join G) = lift i F Join lift i G"
+apply (unfold lift_def)
+apply (simp (no_asm_simp))
+done
+
+lemma lift_JN [simp]: "lift j (JOIN I F) = (JN i:I. lift j (F i))"
+apply (unfold lift_def)
+apply (simp (no_asm_simp))
+done
+
+(*** Safety: co, stable, invariant ***)
+
+lemma lift_constrains: 
+     "(lift i F : (lift_set i A) co (lift_set i B)) = (F : A co B)"
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_constrains)
+done
+
+lemma lift_stable: 
+     "(lift i F : stable (lift_set i A)) = (F : stable A)"
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_stable)
+done
+
+lemma lift_invariant: 
+     "(lift i F : invariant (lift_set i A)) = (F : invariant A)"
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_invariant)
+done
+
+lemma lift_Constrains: 
+     "(lift i F : (lift_set i A) Co (lift_set i B)) = (F : A Co B)"
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_Constrains)
+done
+
+lemma lift_Stable: 
+     "(lift i F : Stable (lift_set i A)) = (F : Stable A)"
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_Stable)
+done
+
+lemma lift_Always: 
+     "(lift i F : Always (lift_set i A)) = (F : Always A)"
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_Always)
+done
+
+(*** Progress: transient, ensures ***)
+
+lemma lift_transient: 
+     "(lift i F : transient (lift_set i A)) = (F : transient A)"
+
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_transient)
+done
+
+lemma lift_ensures: 
+     "(lift i F : (lift_set i A) ensures (lift_set i B)) =  
+      (F : A ensures B)"
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_ensures)
+done
+
+lemma lift_leadsTo: 
+     "(lift i F : (lift_set i A) leadsTo (lift_set i B)) =  
+      (F : A leadsTo B)"
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_leadsTo)
+done
+
+lemma lift_LeadsTo: 
+     "(lift i F : (lift_set i A) LeadsTo (lift_set i B)) =   
+      (F : A LeadsTo B)"
+apply (unfold lift_def lift_set_def)
+apply (simp (no_asm_simp) add: rename_LeadsTo)
+done
+
+
+(** guarantees **)
+
+lemma lift_lift_guarantees_eq: 
+     "(lift i F : (lift i ` X) guarantees (lift i ` Y)) =  
+      (F : X guarantees Y)"
+
+apply (unfold lift_def)
+apply (subst bij_lift_map [THEN rename_rename_guarantees_eq, symmetric])
+apply (simp (no_asm_simp) add: o_def)
+done
+
+lemma lift_guarantees_eq_lift_inv: "(lift i F : X guarantees Y) =  
+      (F : (rename (drop_map i) ` X) guarantees (rename (drop_map i) ` Y))"
+by (simp add: bij_lift_map [THEN rename_guarantees_eq_rename_inv] lift_def)
 
 
+(*** We devote an ENORMOUS effort to proving lift_transient_eq_disj, 
+     which is used only in TimerArray and perhaps isn't even essential
+     there!
+***)
+
+(*To preserve snd means that the second component is there just to allow
+  guarantees properties to be stated.  Converse fails, for lift i F can 
+  change function components other than i*)
+lemma lift_preserves_snd_I: "F : preserves snd ==> lift i F : preserves snd"
+apply (drule_tac w1=snd in subset_preserves_o [THEN subsetD])
+apply (simp (no_asm_simp) add: lift_def rename_preserves)
+apply (simp (no_asm_use) add: lift_map_def o_def split_def)
+done
+
+lemma delete_map_eqE':
+     "(delete_map i g) = (delete_map i g') ==> EX x. g = g'(i:=x)"
+apply (drule_tac f = "insert_map i (g i) " in arg_cong)
+apply (simp (no_asm_use) add: insert_map_delete_map_eq)
+apply (erule exI)
+done
+
+lemmas delete_map_eqE = delete_map_eqE' [THEN exE, elim!]
+
+lemma delete_map_neq_apply:
+     "[| delete_map j g = delete_map j g';  i~=j |] ==> g i = g' i"
+by force
+
+(*A set of the form (A <*> UNIV) ignores the second (dummy) state component*)
+
+lemma vimage_o_fst_eq [simp]: "(f o fst) -` A = (f-`A) <*> UNIV"
+by auto
+
+lemma vimage_sub_eq_lift_set [simp]:
+     "(sub i -`A) <*> UNIV = lift_set i (A <*> UNIV)"
+by auto
+
+lemma mem_lift_act_iff [iff]: 
+     "((s,s') : extend_act (%(x,u::unit). lift_map i x) act) =  
+      ((drop_map i s, drop_map i s') : act)"
+apply (unfold extend_act_def, auto)
+apply (rule bexI, auto)
+done
+
+lemma preserves_snd_lift_stable:
+     "[| F : preserves snd;  i~=j |]  
+      ==> lift j F : stable (lift_set i (A <*> UNIV))"
+apply (auto simp add: lift_def lift_set_def stable_def constrains_def rename_def extend_def mem_rename_set_iff)
+apply (auto dest!: preserves_imp_eq simp add: lift_map_def drop_map_def)
+apply (drule_tac x = i in fun_cong, auto)
+done
+
+(*If i~=j then lift j F  does nothing to lift_set i, and the 
+  premise ensures A<=B.*)
+lemma constrains_imp_lift_constrains:
+    "[| F i : (A <*> UNIV) co (B <*> UNIV);   
+        F j : preserves snd |]   
+     ==> lift j (F j) : (lift_set i (A <*> UNIV)) co (lift_set i (B <*> UNIV))"
+apply (case_tac "i=j")
+apply (simp add: lift_def lift_set_def rename_constrains)
+apply (erule preserves_snd_lift_stable[THEN stableD, THEN constrains_weaken_R], assumption)
+apply (erule constrains_imp_subset [THEN lift_set_mono])
+done
+
+(** Lemmas for the transient theorem **)
+
+lemma insert_map_upd_same: "(insert_map i t f)(i := s) = insert_map i s f"
+by (rule ext, auto)
+
+lemma insert_map_upd:
+     "(insert_map j t f)(i := s) =  
+      (if i=j then insert_map i s f  
+       else if i<j then insert_map j t (f(i:=s))  
+       else insert_map j t (f(i - Suc 0 := s)))"
+apply (rule ext)
+apply (simp split add: nat_diff_split) 
+done
+
+lemma insert_map_eq_diff:
+     "[| insert_map i s f = insert_map j t g;  i~=j |]  
+      ==> EX g'. insert_map i s' f = insert_map j t g'"
+apply (subst insert_map_upd_same [symmetric])
+apply (erule ssubst)
+apply (simp only: insert_map_upd if_False split: split_if, blast)
+done
+
+lemma lift_map_eq_diff: 
+     "[| lift_map i (s,(f,uu)) = lift_map j (t,(g,vv));  i~=j |]  
+      ==> EX g'. lift_map i (s',(f,uu)) = lift_map j (t,(g',vv))"
+apply (unfold lift_map_def, auto)
+apply (blast dest: insert_map_eq_diff)
+done
+
+
+ML
+{*
+bind_thm ("export_mem_extend_act_iff", export mem_extend_act_iff)
+*}
+
+
+lemma lift_transient_eq_disj:
+     "F : preserves snd  
+      ==> (lift i F : transient (lift_set j (A <*> UNIV))) =  
+          (i=j & F : transient (A <*> UNIV) | A={})"
+apply (case_tac "i=j")
+apply (auto simp add: lift_transient)
+apply (auto simp add: lift_set_def lift_def transient_def rename_def extend_def Domain_extend_act)
+apply (drule subsetD, blast)
+apply auto
+apply (rename_tac s f uu s' f' uu')
+apply (subgoal_tac "f'=f & uu'=uu")
+ prefer 2 apply (force dest!: preserves_imp_eq, auto)
+apply (drule sym)
+apply (drule subsetD)
+apply (rule ImageI)
+apply (erule bij_lift_map [THEN good_map_bij, 
+                           THEN export_mem_extend_act_iff [THEN iffD2]], force)
+apply (erule lift_map_eq_diff [THEN exE], auto)
+done
+
+(*USELESS??*)
+lemma lift_map_image_Times: "lift_map i ` (A <*> UNIV) =  
+      (UN s:A. UN f. {insert_map i s f}) <*> UNIV"
+apply (auto intro!: bexI image_eqI simp add: lift_map_def)
+apply (rule split_conv [symmetric])
+done
+
+lemma lift_preserves_eq:
+     "(lift i F : preserves v) = (F : preserves (v o lift_map i))"
+by (simp add: lift_def rename_preserves)
+
+(*A useful rewrite.  If o, sub have been rewritten out already then can also
+  use it as   rewrite_rule [sub_def, o_def] lift_preserves_sub*)
+lemma lift_preserves_sub:
+     "F : preserves snd  
+      ==> lift i F : preserves (v o sub j o fst) =  
+          (if i=j then F : preserves (v o fst) else True)"
+apply (drule subset_preserves_o [THEN subsetD])
+apply (simp add: lift_preserves_eq o_def drop_map_lift_map_eq)
+apply (simp cong del: if_weak_cong add: lift_map_def eq_commute split_def o_def, auto)
+done
+
+
+(*** Lemmas to handle function composition (o) more consistently ***)
+
+(*Lets us prove one version of a theorem and store others*)
+lemma o_equiv_assoc: "f o g = h ==> f' o f o g = f' o h"
+by (simp add: expand_fun_eq o_def)
+
+lemma o_equiv_apply: "f o g = h ==> ALL x. f(g x) = h x"
+by (simp add: expand_fun_eq o_def)
+
+lemma fst_o_lift_map: "sub i o fst o lift_map i = fst"
+apply (rule ext)
+apply (auto simp add: o_def lift_map_def sub_def)
+done
+
+lemma snd_o_lift_map: "snd o lift_map i = snd o snd"
+apply (rule ext)
+apply (auto simp add: o_def lift_map_def)
+done
+
+
+(*** More lemmas about extend and project 
+     They could be moved to {Extend,Project}.ML, but DON'T need the locale ***)
+
+lemma extend_act_extend_act: "extend_act h' (extend_act h act) =  
+      extend_act (%(x,(y,y')). h'(h(x,y),y')) act"
+apply (auto elim!: rev_bexI simp add: extend_act_def, blast) 
+done
+
+lemma project_act_project_act: "project_act h (project_act h' act) =  
+      project_act (%(x,(y,y')). h'(h(x,y),y')) act"
+by (auto elim!: rev_bexI simp add: project_act_def)
+
+lemma project_act_extend_act:
+     "project_act h (extend_act h' act) =  
+        {(x,x'). EX s s' y y' z. (s,s') : act &  
+                 h(x,y) = h'(s,z) & h(x',y') = h'(s',z)}"
+by (simp add: extend_act_def project_act_def, blast)
+
+
+(*** OK and "lift" ***)
+
+lemma act_in_UNION_preserves_fst:
+     "act <= {(x,x'). fst x = fst x'} ==> act : UNION (preserves fst) Acts"
+apply (rule_tac a = "mk_program (UNIV,{act},UNIV) " in UN_I)
+apply (auto simp add: preserves_def stable_def constrains_def)
+done
+
+
+ML
+{*
+bind_thm ("export_Acts_extend", export Acts_extend);
+bind_thm ("export_AllowedActs_extend", export AllowedActs_extend)
+*}
+
+lemma UNION_OK_lift_I:
+     "[| ALL i:I. F i : preserves snd;   
+         ALL i:I. UNION (preserves fst) Acts <= AllowedActs (F i) |]  
+      ==> OK I (%i. lift i (F i))"
+apply (auto simp add: OK_def lift_def rename_def export_Acts_extend)
+apply (simp (no_asm) add: export_AllowedActs_extend project_act_extend_act)
+apply (rename_tac "act")
+apply (subgoal_tac
+       "{(x, x'). \<exists>s f u s' f' u'. 
+                    ((s, f, u), s', f', u') : act & 
+                    lift_map j x = lift_map i (s, f, u) & 
+                    lift_map j x' = lift_map i (s', f', u') } 
+                <= { (x,x') . fst x = fst x'}")
+apply (blast intro: act_in_UNION_preserves_fst, clarify)
+apply (drule_tac x = j in fun_cong)+
+apply (drule_tac x = i in bspec, assumption)
+apply (frule preserves_imp_eq, auto)
+done
+
+lemma OK_lift_I:
+     "[| ALL i:I. F i : preserves snd;   
+         ALL i:I. preserves fst <= Allowed (F i) |]  
+      ==> OK I (%i. lift i (F i))"
+by (simp add: safety_prop_AllowedActs_iff_Allowed UNION_OK_lift_I)
+
+
+lemma Allowed_lift [simp]: "Allowed (lift i F) = lift i ` (Allowed F)"
+by (simp add: lift_def Allowed_rename)
+
+lemma lift_image_preserves: "lift i ` preserves v = preserves (v o drop_map i)"
+apply (simp (no_asm) add: rename_image_preserves lift_def inv_lift_map_eq)
+done
+
 end