--- a/src/HOL/Isar_Examples/Peirce.thy Thu Feb 20 23:16:33 2014 +0100
+++ b/src/HOL/Isar_Examples/Peirce.thy Thu Feb 20 23:46:40 2014 +0100
@@ -19,18 +19,18 @@
there is negation elimination; it holds in intuitionistic logic as
well.} *}
-theorem "((A --> B) --> A) --> A"
+theorem "((A \<longrightarrow> B) \<longrightarrow> A) \<longrightarrow> A"
proof
- assume "(A --> B) --> A"
+ assume "(A \<longrightarrow> B) \<longrightarrow> A"
show A
proof (rule classical)
- assume "~ A"
- have "A --> B"
+ assume "\<not> A"
+ have "A \<longrightarrow> B"
proof
assume A
- with `~ A` show B by contradiction
+ with `\<not> A` show B by contradiction
qed
- with `(A --> B) --> A` show A ..
+ with `(A \<longrightarrow> B) \<longrightarrow> A` show A ..
qed
qed
@@ -48,19 +48,19 @@
contrast, strong assumptions (as introduced by \isacommand{assume})
are solved immediately. *}
-theorem "((A --> B) --> A) --> A"
+theorem "((A \<longrightarrow> B) \<longrightarrow> A) \<longrightarrow> A"
proof
- assume "(A --> B) --> A"
+ assume "(A \<longrightarrow> B) \<longrightarrow> A"
show A
proof (rule classical)
- presume "A --> B"
- with `(A --> B) --> A` show A ..
+ presume "A \<longrightarrow> B"
+ with `(A \<longrightarrow> B) \<longrightarrow> A` show A ..
next
- assume "~ A"
- show "A --> B"
+ assume "\<not> A"
+ show "A \<longrightarrow> B"
proof
assume A
- with `~ A` show B by contradiction
+ with `\<not> A` show B by contradiction
qed
qed
qed