src/HOL/Library/Binomial.thy
changeset 25162 ad4d5365d9d8
parent 25134 3d4953e88449
child 25378 dca691610489
--- a/src/HOL/Library/Binomial.thy	Tue Oct 23 22:48:25 2007 +0200
+++ b/src/HOL/Library/Binomial.thy	Tue Oct 23 23:27:23 2007 +0200
@@ -44,7 +44,7 @@
 lemma binomial_1 [simp]: "(n choose Suc 0) = n"
 by (induct n) simp_all
 
-lemma zero_less_binomial: "k \<le> n ==> (n choose k) \<noteq> 0"
+lemma zero_less_binomial: "k \<le> n ==> (n choose k) > 0"
 by (induct n k rule: diff_induct) simp_all
 
 lemma binomial_eq_0_iff: "(n choose k = 0) = (n<k)"
@@ -53,8 +53,9 @@
 apply (simp add: zero_less_binomial)
 done
 
-lemma zero_less_binomial_iff: "(n choose k \<noteq> 0) = (k\<le>n)"
-by (simp add: linorder_not_less binomial_eq_0_iff)
+lemma zero_less_binomial_iff: "(n choose k > 0) = (k\<le>n)"
+by(simp add: linorder_not_less binomial_eq_0_iff neq0_conv[symmetric]
+        del:neq0_conv)
 
 (*Might be more useful if re-oriented*)
 lemma Suc_times_binomial_eq: