--- a/src/HOL/Real_Asymp/Multiseries_Expansion.thy Wed Oct 02 22:08:52 2024 +0200
+++ b/src/HOL/Real_Asymp/Multiseries_Expansion.thy Wed Oct 02 23:47:07 2024 +0200
@@ -1716,7 +1716,7 @@
shows "f \<sim>[at_top] eval_monom (dominant_term_ms_aux xs) basis" (is ?thesis1)
and "eventually (\<lambda>x. sgn (f x) = sgn (fst (dominant_term_ms_aux xs))) at_top" (is ?thesis2)
proof -
- include asymp_equiv_notation
+ include asymp_equiv_syntax
from xs(2,1) obtain xs' C b e basis' where xs':
"trimmed C" "xs = MSLCons (C, e) xs'" "basis = b # basis'"
"is_expansion_aux xs' (\<lambda>x. f x - eval C x * b x powr e) (b # basis')"